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Small-Scale Fading & Large-Scal Fading

small-scale fading: receiver moving through a spatial interference pattern.
large-scale fading: slow changes in the propagation environment.
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Multipath Effects

Multipath in the radio channel creates small-scale fading effects. 
This results in:

• rapid changes in signal strength over a small travel distance
or time interval

• frequency selectivity caused by multipath propagation delays
• frequency modulation due to varying Doppler shifts on

different multipath signals
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Spatial and Temporal Variations

Consider a moving mobile station, a fixed base station and a static
environment, i.e. only the mobile receiver is moving. Then, the spatial 

variations of the signal are seen as temporal variations by the receiver as 
it moves through the interference pattern

time or position
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Factors Influencing Small-Scale Fading

Channel Type:

• fixed-to-mobile

• line of sight (LOS) radio link

• satellite link

• stationary reception of TV/Radio

• …

Physical Factors:

• multipath propagation

• speed of the receiver

• speed of the surrounding objects

• signal bandwidth
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Advanced Radio Communication I

Small-Scale Fading
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Small-Scale Fading f(t)Larg-Scale Fading m(t)

The Components of Fading
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2-Dimensional Gaussian 
distribution for ℜ(#$) and ℑ(#$)
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Large-Scale Fading 
(Log-Normal Fading)
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Question 1:
Multi-Path creates small scale fading. What are the effects of fading?
Question 2:
Which physical factors (multipath, speed of Rx, movements of objects) 
are relevant for a satellite TV downlink?
Question 3:
What is the probability density function of the sum of a large number of 
independent random variables? 
Question 4:
Which are the condition(s) to obtain a Rayleigh distribution for the 
magnitude of the Rx signal in a small-scale fading environment? 
Question 5:
What does the Ricean factor K describe? 
Question 6:
What probability density function describes large scale fading characterized 

Questions
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Advanced Radio Communication I

Channel Transfer Function and Impulse Response
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Channel Transfer Function and Impulse Response

The channel, the input signal and the output signal are modeled as linear time 
variant. Then they are completely described in:
• Time Domain (time variable t)
• Frequency Domain (frequency variable f)

In the time domain the channel, the input signal and the output signal are real
quantities. Further, there DC component must be 0.

r(τ ) = h(τ )∗ s(τ )

output channel input

R( f ) = H ( f ) ⋅S( f )

output channel input

t

convolution
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spectrum of equivalent 
baseband signal

real part
imaginary part

C(Δf )

f

real part
imaginary part

+f0-f0

spectrum of bandpass signal 
for positive frequencies

spectrum of bandpass signal 
for negative frequencies

H ( f ) for f > 0H ( f ) for f < 0

Bandpass and Equivalent Baseband Signals
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Channel Transfer Function and Impulse Response

The channel, the input signal and the output signal are modeled as linear time 
variant. Then they are completely described in:
• Time Domain (time variable t)
• Frequency Domain (frequency variable f)

Since all signals are band-limited (bandpass) the equivalent (complex) baseband
representation can be used (known as low-pass or complex envelope)

bandpass

equivalent 
baseband

€ 

r(τ) = h(τ )∗ s(τ)

v(τ) =
1
2
c(τ )∗ x(τ)

time domain

output channel input

€ 

R( f ) = H( f ) ⋅ S( f )

V (Δf ) =
1
2
C(Δf ) ⋅ X(Δf )

frequency domain

output channel input

t

t
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Channel Transfer Function and Impulse Response

H ( f ) R( f )S( f )

C(Δf ) V (Δf )X(Δf )

bandpass

equivalent 
baseband

h(τ ) = c(τ ) cos 2π f0τ +∠c(τ )( )

H ( f ) = 1
2
C( f − f0 )+

1
2
C*(− f − f0 )
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Characterization of the 
Frequency-Selective Channel

– Time Domain –
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Band-Limited Impulse Response Function
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Normalized Power Delay Profile

-35

-30

-25

-20

-15

-10

-5

0

50 52 54 56 58 60 62 64 66 68 70no
rm

al
iz

ed
 p

ow
er

 d
el

ay
 p

ro
fil

e 
[d

B]

time delay parameter ! [#$]



22 Institute of Radio Frequency Engineering 
and Electronics

Frequency-Selective Channel

The radio channel can be characterized:
• in the time domain by the impulse response
• in the frequency domain by the channel transfer function

In the time domain, the characterization is based on the power
delay profile (PDP) function which describes the relative received
power as a function of the delay.

In order to compare different channels, parameters which
quantify the channel are utilized. The mean excess delay and the
RMS delay spread are parameters determined directly from the
PDP
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Characterization of the 
Frequency-Selective Channel

– Frequency Domain –
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BB Transfer Function and Correlation Bandwidth
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Frequency-Selective Channel

In the frequency domain, the characterization is based on the
frequency autocorrelation function (ACF) which describes over
which frequencies the channel is flat.

In order to compare different channels, parameters which
quantify the channel are utilized. The coherence or correlation
bandwidth is a parameters determined directly from the
frequency ACF
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Relating the Channel to the Signal

normalized frequency ACFbaseband transfer function
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Characterization of the 
Time-Variant Channel

– Time Domain –
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Signal Envelope and Coherence Time

normalized temporal ACFtime-varying envelope 
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Characterization of the Time-Variant Channel

In the time domain, the characterization is based on the temporal
autocorrelation function (ACF) which describes how fast the
channel changes in time.

In order to compare different channels, parameters which
quantify the channel are utilized. The coherence or correlation
time is a parameters determined directly from the temporal ACF
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Characterization of the 
Time-Variant Channel

– Frequency Domain –
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Power Spectral Density (power Doppler Spectrum)
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Characterization of the Time-Variant Channel

In the frequency domain, the characterization is based on the
Power Spectral Density (PSD) or power Doppler spectrum
(function) which is the received power spectrum for a pure
sinusoidal transmitted signal.

In order to compare different channels, parameters which
quantify the channel are utilized. The Doppler spread is a
measure of the spectral broadening.
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Signal Envelope and Coherence Time

normalized temporal ACFtime-varying envelope 
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Geometry for Multipath Wave Propagation

last scattering center for
multipath signal i

αvR,i

receiver position
at time t

receiver positio
n

at tim
e t=0

vR t

Δs =| vR| cos(αvR,i) t
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Jakes Doppler Spectrum
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