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1 Antennas

1.1 Electromagnetic Radiation as Waves

The term Electromagnetic radiation is used to describe a time varying electric and mag-

netic field that can propagate through space from one point to another, even when there

is no matter in the intervening region. Such a propagating oscillatory phenomenon has

the properties of a wave. The aim of this section is to find a mathematical way to

describe waves. The approach follows that of [Woodhouse, 2006] which is to start

with the simplest possible description and successively modify it so that it includes the

various parameters describing a wave.

Travelling wave

A good starting point in order to account for oscillating properties is a harmonic wave.

A wave traveling for example along the z-axis is then represented by the function:

E(z) = A sin βz (1.1)

where β is a positive constant known as the wavenumber, βz is in units of radian, and

A is the amplitude of the wave representing the maximum height of E(z) which varies

between −A and +A. The above function describes a wave which changes shape with

z, but what we want are waves that change with time and travels with the velocity of

light c. In order for the function E to describe such a traveling wave we need to replace

its argument by β(z − ct) giving

E(z, t) = A sin β(z − ct) (1.2)

This completely describes the wave at any point along its direction of travel z at any

time t. Note that (1.1) actually describes a snapshot of the wave E(z, t)|t=0 = E(z). The

above function can be used to gain some insight into the properties of the wave. For

example fixing either position z or time t we still get a sinusoidal function, the wave is

thus periodic both in time and space.

1



2 1 Antennas

Periodicity in space and time

The distance over which the function repeats itself is known as the wavelength and

commonly denoted by the letter λ. By definition a change in distance by λ (or ±n
multiples of the wavelength ±n · λ) produces the same value of the function, i.e. E(z +

λ, t) = E(z, t); namely:

E(z + λ, t) = A sin β [(z + λ)− ct] = A sin [βz + βλ− βct] = E(z, t) (1.3)

For a sinusoidal function, the last equality requires that the argument is altered by

2π, such that βλ = 2π so that the wavenumber β must be related to the wavelength

through

β =
2π

λ
(1.4)

Similarly it can be shown that the temporal period T it takes the wave to pass a

stationary observer is given by T = λ/c in units of time per wave cycle. Most commonly

the inverse, i.e. the number of wave cycles or oscillations per unit time is used, which is

denoted by frequency f = 1/T . The frequency is given in number of cycles per second

and measured in Hertz1. We thus arrive at the important relationship:

c = λf (1.5)

Substituting into the function E(z, t) and using ω = 2πf gives the common way of

representing a travelling wave:

E(z, t) = A sin(βz − ωt+ φ0) (1.6)

where the initial phase φ0 has been included to allow for an arbitrary starting phase

when t = z = 0.

Phasor Representation

The oscillatory nature of the wave can be related to the cyclic nature of a rotating vector.

If we consider a vector or phasor of length A rotating anti-clockwise with constant

angular velocity ω = 2πf then it will trace a circle over time and complete one cycle in

T seconds. This vector or phasor plotted in a Cartesian coordinate system will subtend

the angle φ with the positive x-axis as shown in Fig. 1.1; the tip of this vector or phasor

projected on the y-axis is describes by A sin φ and if this projection is plotted versus

1Heinrich Hertz (22 February 1857 – 1 January 1894) was a German physicist who first conclusively

proved the existence of electromagnetic waves theorized by Maxwell. The scientific unit of frequency

–cycles per second– was named the “Hertz” in his honor. (source Wikipedia)

Only for internal use at KIT



1.1 Electromagnetic Radiation as Waves 3

t

t

A

A

E(t)

Figure 1.1: Representation of a sinusoidal function by a phasor of length A and angle

φ with respect to the horizontal axis and its projection on the vertical axis.

time it will give exactly the representation of the wave given by (1.6) for a fixed spatial

position z.

The phasor can also be understood as a vector in a 2-dimensional plane, where the

x and y component are given by A cosφ and A sinφ, respectively. However, mathe-

matically it is more convenient to work in the complex plane, where x and y are re-

placed by the real and imaginary axes, respectively. Then the phasor can be written as

A cosφ+ jA sinφ = Aejφ.

Drill Problem 1 Consider two waves given by:

E1(z, t) = 6 sin(β0z − ω0t + π/5), and

E2(z, t) = 4 sin(β0z − ω0t− π/9)

which are oscillating at the same frequency. Use the phasor representation to deter-

mine the difference in phase between the two waves at any specific distance z = z0
and time instance t = t0.

Polarization

There is one more property that needs to be considered for electromagnetic waves

which is the polarization. This is necessary because for transversal electromagnetic

waves the oscillation is perpendicular to the direction of travel2. Polarization describes

the direction in which the electric field oscillation is taking place. The polarization of an

electromagnetic wave can be described by the superposition of its two components.

2For example “up and down” like a rope. Unlike sound waves, which are longitudinal such that the

oscillations are along the direction of travel “to and from” like a spring.

Nur zum internen Gebrauch am KIT



4 1 Antennas

For the wave represented by (1.6) which is travelling to the z-direction, the two com-

ponents would be in the x- and y-direction, as such the electric field is represented

by a vector ~E which consists of two (orthogonal) waves oscillating along the êx and êy

directions. This gives:

~E(z, t) = E0x sin(βz − ωt+ φ0x)êx + E0y sin(βz − ωt+ φ0y)êy (1.7)

or, using matrix notation:

[
Ex(z, t)

Ey(z, t)

]

=

[
E0x sin(βz − ωt+ φ0x)

E0y sin(βz − ωt+ φ0y)

]

. (1.8)

where E0x and E0y are the wave amplitudes for the x- and y-component of the wave,

respectively.

1.2 What does an Antenna Do? And How?

In electrical engineering, information transfer means energy transfer. This is normally

achieved by guiding structures such as two wire transmission lines, coaxial transmis-

sion lines, hollow or dielectric waveguides. Let us assume that a guiding structure

consists of an ideally conducting material. In this case, the power density ~S = 1
2
~E× ~H∗

(assuming ejωt dependence) is directed along the guiding structure and lies completely

outside the conductor. On the other hand, e.g. a plane wave traveling in +z-direction

~E = E0e
−j(βz−ωt)

êx (1.9a)

~H =
E0

Z0

e−j(βz−ωt)êy (1.9b)

with Z0 =
√

µ0/ε0 ≈ 377Ω as the free space wave impedance satisfies Maxwell’s

Equations and doesn’t need any guiding structures.

The task of an antenna is to allow energy transfer without guiding structures and

hence to match the field in the guiding structure to a desired free-space field configura-

tion which satisfies Maxwell’s equations. The antenna is a region of transition between

a wave guided by some transmission line and a free-space wave. The transmission

line conductor separation is a small fraction of a wavelength, while the separation at

the open end of the transition region or antenna may be many wavelengths.

In terms of electrical circuits, an antenna is represented by its Thévenin equivalent

circuit shown in Figure 1.2. Here, ZG = Rg + jXg is the internal impedance of the

generator and ZA = Rl + Rr + jXa is the input impedance of the antenna. The real

part of the input impedance is split into ohmic and dielectric losses, represented by Rl,

Only for internal use at KIT



1.2 What does an Antenna Do? And How? 5

Generator Antenna

VG

a

b

jXa

Rr

ZG

Rl

power flow

(a) transmitting antenna

ReceiverAntenna

VA

a

b

jXa

Rr
ZE

Rl

power flow

(b) receiving antenna

Figure 1.2: Thévenin equivalent circuit of an antenna

and the radiated power represented by Rr. The latter is called radiation resistance.

The imaginary part of the input impedance results from the stored energy in the region

near the antenna (the so called reactive near field region, see section 1.3.1).

In the case that Xg = −Xa we speak of conjugate matching. If Rl = 0, maximum half

of the total power can be radiated if Rg = Rr. The input impedance of an antenna is a

function of frequency. Therefore a good match is always limited in its bandwidth (see

section 1.5.7).

Drill Problem 2 Use Maxwell equations to derive the following wave equation in source

free, but lossy regions:

∇2~E = µσ
∂~E

∂t
+ ǫµ

∂2~E

∂t2

Given that a possible solution of (2) is ~E = ~E0e
jωte−~γ~x, determine the real and imaginary

part of γ assuming an isotropic medium. Probably the vector identity ∇ × ∇ × ~A =

∇
(

∇ · ~A
)

−∇2 ~A which holds for an arbitrary vector ~A might be helpful.

1.2.1 Antenna Radiation Mechanism

One of the first questions that may be asked concerning antennas would be “how is

radiation accomplished?” In other words, how are the electromagnetic fields generated

such that they “detach” from the antenna to form a free-space wave? One possible

answer to this question can be given by examining the differential form of Maxwell’s

equations:

∇× ~H = +ǫo
∂~E

∂t
+ ~J (1.10a)

∇× ~E = −µo
∂ ~H

∂t
(1.10b)

Nur zum internen Gebrauch am KIT



6 1 Antennas

The above equations assume free space as surrounding medium. The field quan-

tities ~H and ~E are complex vectors representing the magnetic and electric field inten-

sities, respectively. The impressed electric current density is denoted by ~J and is as-

sumed to be the source of the radiated electromagnetic field. The task of the antenna

structure is to produce a current distribution ~J which generates a free-space wave, i.e.

a wave where the ~H and ~E fields reproduce each other.

From (1.10a) it is seen that an impressed ~J results in a non-vanishing ∇ × ~H. Any

non-trivial solution for the magnetic field intensity ~H requires that ~H itself be non-

vanishing. From (1.10b) it is deduced, that if ∂ ~H
∂t

is not zero the ~H field will in turn

produce a ∇ × ~E and thus an electric field intensity ~E 6= 0. From (1.10a) this electric

field will then itself be the source producing the magnetic field, provided ∂~E
∂t

6= 0. Thus

the field reproduces itself and the electric current density ~J is needed only to initiate

the process and can be set to zero outside the structure producing the space wave.

To state the conditions for the time dependency of the ~H and ~E fields, a point outside

the antenna structure is investigated, thus where ~J = 0. Then Maxwell’s equations are

written as:

∇× ~H = +ǫo
∂~E

∂t
(1.11a)

∇× ~E = −µo
∂ ~H

∂t
(1.11b)

writing the electric field intensity as a separable function of space (x, y, z) and time t

coordinates ~E = A1~v(x, y, z)f(t) where A1 is a constant, ~v(x, y, z) is a complex vector,

and f(t) a scalar. Then inserting into (1.11a) gives

∇× ~H = +ǫo
∂~E

∂t
= ǫoA1~v(x, y, z)

∂f(t)

∂t
(1.12)

Solving the above differential equation results in a magnetic intensity given by ~H =

A2 ~w(x, y, z)
∂f(t)
∂t

where ~w(x, y, z) satisfies

∇× ~w(x, y, z) = ~v(x, y, z) (1.13)

The time dependency of the magnetic field is explicitly given by
∂f(t)
∂t

. When inserting
~H into (1.11b) and solving for ~E the time dependency of the electric field is found to be
∂2f(t)
∂t2

. If either
∂f(t)
∂t

or
∂2f(t)
∂t2

vanish, i.e. ≡ 0, then ∇ × ~H or ∇ × ~E would vanish and

the electromagnetic field would not reproduce itself, thus prohibiting a space wave or

equivalently no radiation would occur. By repeating the above process, thus iteratively

using (1.11a) and (1.11b) to obtain the ~E field from the ~H field and vice versa, it is

obvious that all the time derivatives must be non-vanishing, i.e.,

∂nf(t)

∂tn
6= 0 for n = 1, 2, 3 . . . (1.14)

Only for internal use at KIT



1.3 Some Types of Antennas 7

for the radiating fields to be generated. One function f(t) satisfying the above con-

ditions is given by f(t) = exp(jat) where a is a constant the value of which must be

chosen so as not to violate any physical constrains (for example the fields should not

increase monotonously with time). The conclusion is, that an antenna radiates, when

there are accelerated charges of which all time-derivatives are non-zero.

1.3 Some Types of Antennas

In the following we will first give a brief overview of the most common antenna types.

An overview of technology trends and challenges satellite antennas can be found in

[Rahmat-Samii and Densmore, 2015]. Antenna applications range from frequencies

of 10 kHz (λ0 = 30 km) up to frequencies of 60GHz (λ0 = 5mm) or even as high as

THz for some experimental systems. The following discussion will talk about transmit-

ting or receiving antennas interchangeable. This relies on the principle of reciprocity

[Balanis, 1989] which means that for every path the wave may take out of an antenna,

it will take the same path back into the antenna. All passive antennas, i.e. which do not

contain active non-reciprocal components, work the same way whether they are used

for transmission or reception.

Wire Antennas

Wire antennas are mostly used in the “lower” frequency range up to a few hundred

MHz. Everyone is familiar with rod antennas on automobiles, radios, ships and so on.

As the name says, they are made from thin wires which are bent in a certain manner

such as loops (magnetic dipole) for AM radio or straight rods (electric dipole) for FM

radio or helices for spacecraft applications. Their main advantage is their simplicity (i.e.

low price) and robustness.

Drill Problem 3 Calculate the field strength produced by a line source of length 2l

oriented along the z-direction. Assume a uniform current distribution of I(z) = I0/2l.

Hint: Consider the line source to be built up of Hertzian (infinitesimal small) dipoles.

The field strength of a single infinitesimal dipole of length ∆z oriented in z-direction is

given by:

Eθ = I∆z
µ

4π

e−jβ0r

r
jω sin(θ)

Nur zum internen Gebrauch am KIT



8 1 Antennas

Aperture Antennas

This antenna type has somewhere a radiating hole or aperture and is mostly used

at higher frequencies starting at around 1GHz. It is used when the power should be

radiated in a certain direction at a certain beamwidth (see section 1.5.1). The radiating

aperture is mostly the end of a waveguide which is widened so as to match the free

wave impedance. They are well known as horn antennas (e.g. the feed of satellite

receivers, see Fig. 1.3).

Waveguide
Horn

Ap
ert
ur
e

Throat

Figure 1.3: Aperture horn antenna.

Microstrip Antennas

These antennas are relatively young compared with the former. They consist mainly

of a metallic patch on a grounded dielectric substrate (see Figure 1.4) acting as a

resonator. For this reason they are sometimes called patch antennas, where the size

of the patch is typically in the order of λ/2. If one excites oscillations in the patch it

radiates into the free space. There are many different shapes of patch antennas. Most

popular is the rectangular patch because it is easy to manufacture and analyse.

radom

separator

ground plane

λ/4 separator

metal reflector

dialectric substrate

radiating patch

coupling slot

microstrip line

~

Figure 1.4: Aperture coupled microstrip patch antenna
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1.3 Some Types of Antennas 9

Microstrip antennas can be easily manufactured, are conformable to planar or non-

planar surfaces and can be well integrated in Monolithic Microwave Integrated Circuits

(MMIC) designs. They are very versatile (shape and size of the patch, thickness of the

substrate etc.) Disadvantages are low radiation efficiency (see section 1.5).

Parabolic (Reflector) Antennas

When the radiated power shall be confined (focused) in a certain direction, one needs

an antenna which has a large aperture compared to the wavelength. This can be

achieved by means of a reflector similar to the headlights in a car. A parabolic antenna

is a device that focuses the energy incident from a certain direction onto a point. The

curved surface is made of a highly reflecting material at the frequency of interest, this

can be a solid surface at higher frequencies but at lower frequencies it can be a wire

mesh. The reflector needs to be illuminated using another type of antenna (typically

horns are used) which serves as the feed and is placed at or near the focal point of the

parabolic surface of the reflector. By changing the position of the feed the direction of

the main beam can be varied. Reflector antennas are mostly used in spaceborne appli-

Hyperbolic

SubreflectorFeed

Parabolic

Surface

(a) double reflector (Cassegrain) antenna

Feed

(b) reflector with feed

horn

Figure 1.5: Reflector antennas with different types of feeding

cations and directional radio links. Everyone knows the parabolic reflectors for satellite

receivers or the large antennas for radio astronomy. Figure 1.5 shows parabolic reflec-

tor antennas with different feed types.

Lens Antennas

In optics, lenses are used much in the same way as reflectors. Hence, one can also

use lenses to concentrate or focus radiated fields. They are often used in conjunction

with horn antennas or other aperture antennas. In contrast to optics not only dielectric

Nur zum internen Gebrauch am KIT



10 1 Antennas

lenses are used at microwave frequencies but also arrays of parallel plates which can

be considered as an acceleration lens (i.e. the phase velocity inside the lens is higher

than in free space). Since lenses must be large compared to the wavelength, lens

antennas are mostly used at higher frequencies.

Dielectric lens

Plane

Wave

front

Source

of

primary

antenna

Wave

retarded

Wave fronts

(a) dielectric lens antenna 1

Feed

d
o

d
o

W
a
v
e
fr
o
n
t

(b) dielectric lens antenna 2

Wave fronts

Source

of

primary

antenna

Plane

wave

front

E-plane metal plate lens

Wave

accelerated

(c) acceleration lens antenna

Figure 1.6: Lens Antennas

Reflectarrays

As the name indicates, reflectarrays are a combination between a reflector and an

array. They consist of a surface (usually a flat surface) which is illuminated by a feed

antenna. The surface contains a large number of elements which may be of different

sizes and shapes. The principal idea is to design the elements such that a certain

phase value is imposed on the incidence wave, by this the phase on each part of

the reflector is set to a predetermined value. As an example, the phase values can

designed to equal those that would be introduced by a –parablic– reflector surface;

in this case the relfectarray would behave like a reflector although it is build on a flat

surface.

ferroelectric 

materials

variable-length 

phased delay lines
variable-size

variable angular 

rotations

x

y

z

antenna feed

reflectarray

reflectarray beam

feed beam

elements of the reflectarray

Figure 1.7: A reflectarray composed of a large number of individual elements
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1.3 Some Types of Antennas 11

1.3.1 Field Regions

In engineering, it is desirable to make approximations that simplify the analysis and

understanding of physical phenomena. The field of a radiating antenna can be approx-

imated depending on the distance r from the antenna. For distances very far (r ≫ λ)

p
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e
re
g
io
n

single
mode

higher
order
modes

re
fe
re
n
ce

p
la
n
e

mode filed

distance

reactive
near field

radiating
near field

radiating
far field

Figure 1.8: Field regions of an Antenna

from the antenna and if the antenna size D is small compared to the distance, the field

can be considered as a local plane wave emerging from an imaginary phase center (in

a spherical coordinate system centered at the phase center, the field does not have an

êr component). Under this assumption useful approximations can be made that allow

e.g. the easy application of the Fourier transform for an efficient calculation of the field.

This region is called far field region or Fraunhofer region (the latter name comes for

optics). As a rule of thumb, one can speak of the Fraunhofer region if the distance is

r ≥ 2D2

λ
(1.15)

where D is the size of the antenna.

For small distances to the antenna wave phenomena play a minor role and the reac-

tive field predominates, similar to capacitors or coils. That means that every antenna

stores energy temporarily in the surrounding space. This stored energy flows period-

ically into the surrounding volume and back into the antenna. The region where this

happens is called near field region. It is delimited by

r <
λ

2π
. (1.16)
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12 1 Antennas

Of course, these region boundaries are not sharp but rather fuzzy. They are in-

troduced to help engineers to understand the radiation mechanisms, as illustrated in

Fig. 1.8.

The region in-between the far and near field region is called radiating near field or

Fresnel region. The latter name again comes from optics. This is the region where

the waves peel off from the near field. Here the reactive field is still present but small

compared to the radiating component. On the other hand, the above assumption for

the far field can not yet be made. This is why the field in this region is often more

difficult to analyze.

Drill Problem 4 A patch array antenna of length L and width W < L designed to

operate at f = 5.4GHz shall be measured in an anechoic chamber. Derive the condition

for the far field distance, assuming that the maximal allowed phase difference is λ/16.

1.4 Electric Field Radiated by an Oscillating Charge

Radiation is a property of accelerated charges or variable currents. There is a very

simple formula for the electric field E(t) radiated by a charge, q′, assuming the distance

d to the observer is nearly constant [Meys, 2000]. This assumption is very well sat-

isfied by alternating currents in conductors, which are oscillations of extremely small

amplitude, especially at the higher frequencies. With reference to Figure 1.9,

~E(t) =
−µo
4π

q′

d
~a′T

(

t− d

c

)

, (1.17)

where t is the time; µo is the permeability of vacuum; c is the speed of light; and

~a′T is acceleration of the charge with the subscript T indicating the projection on the

transverse plane, i.e. , the plane perpendicular to the direction joining the charge and

the observer.

Of particular interest is the case of a sinusoidal (harmonic) oscillation. Assuming the

speed is
~V (t) = ~Vme

jωt (1.18)

where capital letters are used to denote harmonic time dependency, then the acceler-

ation is
~A(t) = jω~Vme

jωt = jω~V (t) (1.19)

Substituting the above into (1.17) gives

~E(t) = −jω
(µo
4π

)(
e−jβd

d

)

q′~VT (t) (1.20)
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P

e(t)

d

a
T (t-d/c)
´

a(t-d/c)
q´

Figure 1.9: An illustration of the basic formula for the radiated electric field

where β = 2π/λ is the wavenumber.

The electric field radiated by multiple charges is obtained by superposition of the

individual contributions. For n charges, q′1, q
′
2, . . . , q

′
n, with speeds ~V ′

1 ,
~V ′
2 , . . . ,

~V ′
n the

electrical field is:

~E(t) = −jω
(µo
4π

)∑

i

e−jβdi

di
q′i
~V ′
iT (t). (1.21)

The far field approximation can be used for the amplitude (denominator) of the above

expression; this assumes all distances di to the observer at P to be constant and equal

to r. However, the far field approximation is not valid for the phase (exponential) term,

then (1.21) becomes

~E(t) = −jω
(µo
4π

)(
e−jβr

r

)
∑

i

e−jβ(di−r)q′i~V
′
iT (t). (1.22)

Knowing that the product of charge times velocity gives the current we can extend to

the line current ~JL = q′~V ′(t), which gives

~E(t) = −jω
(µo
4π

)(
e−jβr

r

)∫

L′

~JLT (P
′)e−jβ(d−r)dL′ (1.23)

Concerning radiation, an antenna is a current distribution, with all currents propor-

tional to the same cause, i.e. , the current at the feed, Ia. This fact is expressed by

introducing the current distribution:

~JL(P
′) = ~DJL(P

′)Ia. (1.24)

Define the complex equivalent length of the antennas [Meys, 2000] by the following

integral:

~Le =

∫

L′

~DJL(P
′)e−jβ(di−r)dL′ (1.25)
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14 1 Antennas

Using this concept, the electric far field, radiated by any antenna, takes the simple

form

~E = −jω
(µo
4π

)(
e−jβr

r

)

~LeIa. (1.26)

As a complex vector, the equivalent length is able to describe both the amplitude and

the polarization of the emitted field.

1.5 Antenna Parameters

In order to characterize antenna systems and to measure their performance it is nec-

essary to introduce parameters that describe their transmission or reception properties

quantitatively.

radiation resistance, Rr

input impedance, Zin
noise temperature, TA

Current

distribution

radiation patterns, C(θ, φ)

power density, ps

half power beamwidth, 

directivity, D

gain, G

effective aperture, Ae

radiated power, Prad

Polarisation

Figure 1.10: Common circuit and space parameters used to characterize antennas

Such parameters must be measurable and should describe one specific feature that

influences the performance of the antenna system with respect to a certain physical

attribute. Figure 1.10 gives an overview of different antenna parameters. As can be

seen these include circuit parameters which are measured at the input ports of the

antenna as well as space parameters which are more difficult to measure since they

can not be directly accessed. In this section the most important antenna parameters

are introduced.

1.5.1 Radiation Pattern

An antenna radiation pattern or antenna pattern is defined as “a mathematical function

or a graphical representation of the radiation properties of the antenna as a function of

space coordinates”. In most cases, the radiation pattern is determined in the far field

region and is represented as a function of the directional coordinates [Balanis, 1997].
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1.5 Antenna Parameters 15

Radiation properties include power flux density, radiation intensity, field strength, di-

rectivity, phase or polarization. “The radiation property of most concern is the two- or

three-dimensional spatial distribution of radiated energy as a function of the observer’s

position along a path or surface of constant radius” .

Figure 1.11: Three dimensional pattern of a circular horn antenna

If we assume spherical coordinates centered at the antenne, then the radiation pat-

tern C(ϑ, ψ) is defined as the ratio of the field strength in a given direction (ϑ, ψ) to the

maximum field strength, i.e.

C(ϑ, ψ) =
| ~E(ϑ, ψ)|

| ~Emax(ϑ, ψ)|

∣
∣
∣
∣
∣
r=const→∞

0 ≤ C(ϑ, ψ) ≤ 1 (1.27)

measured at a constant distance r in the far field of the antenna, as indicated by r =

const → ∞. All antennas radiate with different intensity in different directions. An

antenna that radiates with the same intensity in all directions C(ϑ, ψ) ≡ 1 is called

isotropic radiator. An isotropic radiator is not realizable in practice and represents a

mathematical model, but it often serves as a reference to real antennas (see sections

1.5.3 and 1.5.4). Real antennas have directional radiation patterns, i.e. the radiation

intensity is higher in some direction as shown in Figure 1.11. Often the radiation pattern

is shown in two planes, the E- and H-plane according to the direction of the ~E and ~H

vectors.

Many antennas have radiation patterns that are symmetrical with respect to one axis.

The most common is the dipole antenna. In this case we speak of an omni-directional

radiation pattern.

Half Power Beamwidth

The radiation intensity of the main lobe of an antenna decreases continuously (ideally

to zero) with growing (angular) distance from the direction of maximum gain. The angle
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16 1 Antennas

between the first two intensity minima (or zeroes) is called the first-null-beamwidth (see

Fig. 1.12). However, this figure-of-merit is not very useful since an intensity of nearly

zero can be neither measured nor used for information transmission.

Half power beamwidth

Minor or side lobes

Main lobe

First side lobe

Null

0 dB

-3 dB

-10 dB Null

Null

Figure 1.12: Antenna radiation pattern in dB showing the relevant pattern parameters.

Therefore the half power beamwidth is introduced which describes the angle which

covers intensities bigger than half of the maximum intensity. The half power beamwidth

is usually specified within the E- or H-plane of the antenna, i.e. either ϑ =const or

ψ =const. In practice, often the 3-dB-beamwidth is used because RF engineers love

to express quantities on a logarithmic scale and 3dB refer approximately to one half

(actually 0.50119). Since the radiation pattern is normalized, i.e. C(ϑmax, ψmax) = 1,

the half power points are given by C2 = 1
2

or C = −3dB. Fig. 1.12 shows an antenna

pattern and the respective half power beamwidth.

1.5.2 Radiated Power

The radiated power is not an antenna parameter in the conventional sense, since it

depends on other external quantities such as the input power fed to the antenna. But

it is useful for explaining antenna parameters such as the antenna directivity and gain

(see next section).

In terms of the Thévenin equivalent cct. introduced in section 1.2 and shown in

Fig. 1.2, the ohmic part of the antenna impedance is split into the radiation resistance

and the loss resistance. This gives a very simple expression for the total power radiated

by the antenna:

Prad =
1

2
|Ia|2Rr. (1.28)

and with conjugate matching, i.e. ZA = Z∗
G, the maximum power is radiated.
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1.5 Antenna Parameters 17

But the radiated power is also obtained as the integral of the power density pS on a

sphere centered at the antenna:

Prad =

∮

A

pSdA (1.29)

where dA is the differential area element; in spherical coordinates dA = r2 sin ϑdψdϑ.

Further, knowing that

pS = |~S| = 1

2
| ~E × ~H∗| = 1

2

| ~E|2
Zo

, (1.30)

and inserting (1.26) gives:

pS =
Zo|Ia|2
8r2

∣
∣
∣
∣
∣

~Le
λ

∣
∣
∣
∣
∣

2

. (1.31)

So the expression for the radiated power in terms of the complex electrical length

becomes:

Prad =
Zo|Ia|2

8

∮

Ω

∣
∣
∣
∣
∣

~Le
λ

∣
∣
∣
∣
∣

2

dΩ. (1.32)

with dΩ = sin ϑ cosψdϑdψ. Notice that the integral is independent of r, which can be

traced back to the law of conservation of energy.

The integral above is actually in terms of the power intensity, which is a far field

quantity that represents the power per steradian in a certain direction. A steradian is a

solid angle corresponding to a unit area on a sphere of radius one, similar to a radian

which is an arc of unit length on a circle with radius one. Hence 4π is the solid angle of

a complete sphere, as 2π is the radian of a circle.

The radiation intensity pΩ [Watt/sr] can be obtained by measuring the power density

pS [Watt/m2] at a given distance r from the antenna and multiplying it by r2:

pΩ = pS · r2. (1.33)

1.5.3 Directivity

The design goal of many antennas is to radiate the power into a given direction. The

power radiated in other directions is undesired or “wasted”. The parameter that de-

scribes how good an antenna radiates into the given direction is called directivity and

it is defined in terms of the power intensity.

Now the directivity is simply the ratio between the radiation intensity of the antenna

and the radiation intensity of an isotropic antenna radiating the same power Prad:

D =
pΩ

1
4π
Prad

. (1.34)

Nur zum internen Gebrauch am KIT



18 1 Antennas

Hence, an isotropic radiator would have a directivity of 1. In general the directivity

is a function of the observers position ϑ, ψ. If no specific direction is given, usually the

direction with the highest radiation intensity is assumed.

Drill Problem 5 The directivity can also be understood as the ratio of radiation in-

tensity of an antenna in a given direction to the radiation intensity averaged over all

directions. Considering this definition derive the following formula to determine the

directivity:

D =
4π

2π∫

ψ=0

π∫

ϑ=0

C2(ϑ, ψ) sin(ϑ)dϑdψ

.

Drill Problem 6 The directivity D of an antenna can be expressed as a function of its

half power beamwidth Θ3dB. Assume an example antenna having a one-dimensional

idealized pattern, which can be expressed in terms of its half power beamwidth as

follows:

C(ϑ, φ) = C(ϑ) =

{
1 for ϑ ≤ Θ3dB

2

0 elsewhere

For this antenna determine the directivity as a function of Θ3dB

1.5.4 Gain

Up to now we have only considered ideal antennas with no losses. Real antennas, of

course, have ohmic and dielectric losses that have to be taken into account. The Pa-

rameter which describes this fact is the conduction-dielectric efficiency ηcd. It expresses

the ratio of the power radiated by the antenna to the total (real) power delivered to the

antenna (see Figure 1.2):

ηcd =
Rr

Rl +Rr
. (1.35)

Hence, the radiated power is

Prad = ηcdPin. (1.36)

The gain is closely related to the directivity. It expresses the ratio of the radiation

intensity into a given direction to the radiation intensity of an isotropic antenna having

the same input power (remember, for the directivity it was the same radiated power.)

So, with (1.36) we can write

G =
pΩ
1
4π
Pin

= ηcdD. (1.37)

Since this parameter takes into account the losses it is used more often as the direc-

tivity for the description of the overall performance of an antenna. As with the directivity

the gain is a function of ϑ, ψ but usually the term gain refers to the maximum gain.
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Drill Problem 7 For the reception of satellite TV (ASTRA 1C 10.95GHz − 11.2GHz)

there are several parabolic antennas on the market. Calculate the maximum gain and

the 3 dB-beamwidth of parabolic antennas with radii of r = 30 cm and r = 50 cm, re-

spectively. Assume an aperture efficincy of 96% and a directivity-beamwidth product

of 33710.

1.5.5 Input Impedance

The input impedance is simply the impedance presented at the terminals of an an-

tenna. Since discontinuities cause (undesired) reflections on transmission lines it is

very important to match the antenna to the connected transmission line. In section 1.2

the Thévenin equivalent was introduced. As shown in Fig. 1.2, the input impedance

consists generally of an ohmic and a reactive part where the ohmic part again is split

into the radiation resistance and the loss resistance.

In general the input impedance of the antenna is frequency dependent. This means

that conjugate matching will only be achieved within a limited frequency range. When-

ever ZA 6= Z∗
G part of the power supplied by the source to the terminals of the antenna

will be reflected back to the source. This will result in a reduced radiated power Prad for

the same input power Pin and thus a reduced gain G.

The input match is described by the reflection coefficient of the scattering matrix; it

is given by the square root of the ratio between the reflected power to the input power:

S11 =

√
pref√
pin

(1.38)

which most commonly is converted into decibles, giving

SdB
11 = 10 · log10

(
pref
pin

)

= 20 · log10 (S11) (1.39)

A reflection coefficient of S11 = 0 dB means that all the input power is reflected back,

whereas a value of S11 = −∞ dB means that there is no reflection at all (perfect

match). For real antennas the value of the match is in-between as shown for example

in Fig. 1.13a.

1.5.6 Effective Aperture, Aperture Efficiency

The parameters above describe very well the transmission properties of an antenna.

On reception, the performance of an antenna is seen as a device that captures power
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from an incident wave. The ratio between the power available at the terminals of an

antenna Pant and the power density of a plane wave incident from the direction of

maximum directivity is called effective aperture:

Ae =
Pant

pS
(1.40)

The effective aperture can also be understood as the area which when multiplied by

the incident power density gives the available power at the antenna terminals. Similar to

the gain, the effective aperture is a measure of how much power the antenna captures

from a plane wave. The proportionality constant is given through:

Ae =
λ2

4π
G (1.41)

In the case of conjugate matching we speak of the maximum effective aperture.

In general, the effective aperture will not be the same as the physical size Ap of the

antenna, even with aperture antennas. Therefore the aperture efficiency

ηap =
Ae
Ap

(1.42)

is introduced. The bigger this value the more efficient is an antenna.

Drill Problem 8 A GSM 1800 mobile phone operating in the 1710MHz to 1880MHz

frequency range has got an antenna gain of −1 dBi. Calculate the effective aperture

area of its antenna.

1.5.7 Bandwidth

The bandwidth is generally the range of frequencies over which an antenna shows suf-

ficient performance. All of the above parameters depend on the frequency and hence,

there is no unique definition of the bandwidth of an antenna. In order to stress which

parameter is considered, often terms like pattern bandwidth or impedance bandwidth

are used.

The impedance bandwidth describes the increasing mismatch (and thus lower power

transmission) as we move away from the center frequency where we usually have

conjugate matching. Most commonly the impedance bandwidth is specified by the

frequency range over which the input match, i.e. S11 is better than −10dB or −14dB.

Fig. 1.13a shows an example of a measured input match over frequency. The pattern

bandwidth describes the change of the pattern shape over the frequency as shown in

Fig. 1.13b. One can even define a polarization, or a gain bandwidth.
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Figure 1.13: Measured antenna parameters

For broadband antennas, the bandwidth is often expressed as the ratio of the max-

imum to the minimum frequency. So, a 5:1 bandwidth indicates that the upper fre-

quency is 5 times bigger than the lower frequency. For narrow-band antennas usually

the bandwidth is expressed in terms of a percentage of the center frequency. Hence, a

4% bandwidth indicates that the antenna works acceptable within 4
100
fc centered at fc.

1.5.8 Polarization

In the far field of an antenna, the radiation can be considered locally as a plane wave.

Because of the vectorial nature of electromagnetic waves, not only intensity and prop-

agation direction, but also the field direction is necessary for a complete description,

which leads to the concept of polarization. In equation (1.9a) the electric field ~E is, at

any time, directed in the êx direction and the magnetic field ~H in (1.9b) always in the êy

direction. The Poynting vector (power flux density) ~S = 1
2
~E × ~H∗ gives us the direction

of propagation êz.

Since physics is independent of human-made coordinate systems, the direction of

the electrical field vector will, in general, not be aligned to êx or êy. Due to the linearity

of Maxwell’s equations any linear combination of solutions to the field equation is itself

a valid field configuration. Thus for a transverse electromagnetic wave propagating in

the êz direction the electric field may be written as the sum of two components:

~E(t) = E0xe
−j2πft

êx + E0ye
−j2πft

êy (1.43)

where the z-dependency βz has been suppressed for convenience and E0x and E0y

are complex quantities given by E0x = |E0x|ejφ0x and E0y = |E0y|ejφ0y , respectively.
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When the electric field components in the x- and y-direction are of the same fre-

quency f and have the same initial phase φ0x = φ0y, then the resulting electric field is

linearly polarized. To show this, first we rewrite (1.43) as

~E(t) = E0x sin(−2πft+ φ0x)êx + E0y sin(−2πft+ φ0x)êy (1.44)

and then consider the length of the resulting vector having components in the êx and

êy directions: ‖ ~E(t)‖ =
√

|E0x|2 + |E2
0y| sin(−2πft + φ0x) = E sin(−2πft + φ0x); this

is a wave of amplitude E oscillating between ±E and subtending a constant angle

tan θ = |E0y|/|E0x| with the x-axis. This shows that it is a linear polarized wave.

Let us imagine a superposition of two waves of the same amplitude E0x = E0y and

phase φ0x = φ0y. The result would be a linearly polarized wave which is tilted by 45
◦

with respect to the x-axis, i.e. the electric field vector oscillates along a line which is

tilted by 45◦.

Another special case occurs, when the amplitude of the two components are equal

|E0x| = |E0y| = |E0| but with a phase difference of 90◦, i.e. φ0y = φ0x+π/2. To determine

oscillation of the resulting wave we proceed as before and write the electric field as:

~E(t) = E0 sin
(
− 2πft+ φ0x

)
êx + E0 sin

(
− 2πft+ φ0x +

π

2

)
êy

= E0 sin(−2πft+ φ0x)êx + E0 cos(−2πft+ φ0x)êy

where the length of the resulting vector is:

‖ ~E(t)‖ = E0

√

sin(−2πft + φ0x)2 + cos(−2πft+ φ0x)2 = E0 (1.45)

which, different from the case before, is constant! Whereas the direction of the electric

field vector with respect to the x-axis is

tan θ =
sin(−2πft)

cos(−2πft)
= 2πft (1.46)

which is changing (rotating) with time.

Depending on whether the phase of the second component is 90
◦ ahead or 90◦ be-

hind the first component, the ~E field is left or right rotating. Here we speak of a circularly

polarized wave.

As illustrated in Figure 1.14 if both components have different amplitudes it is easy

to see that the circle becomes an ellipsis, so in this case we would have an elliptical

polarized wave. If one amplitude becomes zero, we have again a linearly polarized

wave. Therefore, the linearly and circularly polarized waves are only special cases

of the elliptically polarized wave. Any linear combination of an arbitrary number of

monochromatic waves with the same direction of propagation results in an elliptically

polarized wave.
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Figure 1.14: Circular and elliptical polarization

To fully describe an arbitrary polarization either the property of the resulting elliptical

polarization must be specified, or alternatively either both a left- and right circular po-

larized or two orthogonal linearly polarized waves must be specified. These are known

as orthogonal polarized waves. Thus to fully describe the polarization of a wave its two

orthogonal components must be specified.

In practice, one is mostly interested in one of the two orthogonal component of the

polarized wave. The other component is either not used at all or carries different infor-

mation. Therefore one distinguishes between co- and cross-polarization. In general,

the co-polarized component is desired and contributes to the design goal of the an-

tenna system. The cross-polarized component is either unwanted or refers to another

information (e.g. in polarimetric radar [Woodhouse, 2006]).

Drill Problem 9 Another way to show that the electromagnetic wave in (1.44) is lin-

early polarized is by rotating the coordinate system around the êz axis by an angel ρ,

such that the resultant wave is aligned to the (rotated) ê′
x

axis. For E0x = 5Vm−1 and
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E0y = 3Vm−1 find the angel ρ such that the resultant wave is linearly polarized along

the axis ê
′
x
.

Polarimetric Antenna Gain and Radiation Pattern

In the following we derive an expression for the electric field radiate by an antenna in

terms of the antenna gain, radiation pattern and transmit power. Consider a power

source connected to the port of an antenna. The electric field radiated by the antenna

will have co-polar –usually the wanted– and cross-polar –unwanted– components (of-

ten referred to as x-pol). This is written as:

~E(ϑ, ψ, r) = (Eκêκ + Eχêχ)
e−jβr

r
(1.47)

where Eκ and Eχ are the co- and cross-polar wave amplitudes, respectively and êκ, êχ
are two orthogonal unit vectors.

The antenna gain is defined as the ratio of the power intensity of the antenna divided

by the power intensity of an isotropic radiator which has the same input power. The

power intensity pΩ (see (1.33) ) is:

pΩ(ϑ, ψ) =
1

2

∣
∣
∣ ~E × ~H

∣
∣
∣ r2 =

r2

2Z0
| ~E|2 = 1

2Z0

(
|Eκ|2 + |Eχ|2

)
(1.48)

and the gain becomes

G(ϑ, ψ) =
pΩ(ϑ, ψ)

Pin/4π
=

2π

Z0Pin

(
|Eκ|2 + |Eχ|2

)
(1.49)

Further, the complex co- and x-pol radiation patterns of the antenna are defined

as the ratio of the respective electric field component on a sphere of infinite radius

centered at the antenna to the maximum electric field on that sphere. Thus:

Cκ(ϑ, ψ) =
~E(ϑ, ψ, r) · êκ

| ~Emax|

∣
∣
∣
∣
∣
r→∞

and Cχ(ϑ, ψ) =
~E(ϑ, ψ, r) · êχ

| ~Emax|

∣
∣
∣
∣
∣
r→∞

(1.50)

where the factor e−jβr/r is suppressed for convenience.

Note that both radiation patterns are normalized to the same maximum field strength,

thus the maximum value of the co-pol pattern will in general be equal to one, whereas

the cross-pol pattern has a maximum value much smaller than one. This definition is

inline with the way antenna engineers commonly refer to co-/x-pol patterns. Writing the

gain (1.49) in terms of the pattern in (1.50) gives

G(ϑ, ψ) =
2π

Z0Pin
| ~Emax|2

(

|Cκ(ϑ, ψ)|2 + |Cχ(ϑ, ψ)|2
)

. (1.51)
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Notice that the gain in the above equation is a function of position given through the

angels of the spherical coordinate system. Most commonly, the maximum gain (which

is a constant independent of spatial coordinates) is used to characterize antennas

while the radiation patterns are used to describe the directional radiation properties

of the antenna. To arrive at a compatible description we assume that the maximum

power intensity is in the direction of the antenna’s main beam, where |Cκ| = 1 while the

cross-polarized field can be neglected |Cχ| ≈ 0. Then

G = Gmax =
2π| ~Emax|2
Z0Pin

(1.52)

This allows us to define the electric field radiated by an antenna in terms of its gain

and radiation patterns. Solving (1.52) for |Emax| and inserting into (1.47) together with

(1.50) gives:

~E(ϑ, ψ, r) =

√

ZoPin
2π

√
G
(

Cκ(ϑ, ψ)êκ + Cχ(ϑ, ψ)êχ

)e−jβr

r
(1.53)

1.6 Antenna Arrays

Most applications require antennas with characteristics which are difficult to achieve

using one single radiating element. Therefore several radiating elements are com-

bined, in order to obtain the required radiating pattern and gain. The resulting structure

formed by several single radiators is known as antenna array. With the placement of

the single antennas and their individual feeding one can influence the radiation char-

acteristics very precisely. In addition, the effective aperture (see section 1.5.6) can

be increased. A typical examples for antenna arrays are the flat satellite receiver an-

tennas (without reflector). The following sections gives an overview on antenna array

parameters and characteristics.

1.6.1 The Array Factor (General Case)

Figure 1.15 shows an array ofNx byNy patches. The radiating elements i can be of any

type, but are usually identically designed as this is convenient, simple, and practical.

The fields of the different radiators i at (xi, yi, zi) add up linearly in a vector sense to

the total far field at a point (r, ϑ, ψ).

~E(r, ϑ, ψ) =
∑

radiators

~Ei (ri, ϑi, ψi, Ii) (1.54)
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Figure 1.15: Array of patch elements placed in the xy-plane.

The current distribution of a single isolated element is different from the current dis-

tribution of the same element put into an array. Hence, the far field ~Ei of the individual

element in (1.54) is different from the far field of an isolated individual element. The

actual current distribution on the elements depends on the mutual influence of the el-

ements, and therefore on the spacing and the geometry of the array. Thus although

identical radiators are used the field ~Ei of the individual radiators may be different.

Assume now (in contradiction to the previously said) that all elements have an iden-

tical far field ~Esingle when fed by the same current, and that the individual elements do

not interfere with each other. Using (1.26) the field of a single element can be written

as:

~Ei (ri, ϑi, ψi, Ii) =
Ii
Ia
~Esingle (ri, ϑi, ψi, Ia) =

Ii
Ia

[

−jZ0

2

(
e−jβri

ri

) ~Le(ϑi, ψi)

λ
Ia

]

(1.55)

then (1.54) simplifies to

~E(r, ϑ, ψ) =
∑

radiators

~Ei (ri, ϑi, ψi, Ii) =
∑

radiators

Ii
Ia
~Esingle (ri, ϑi, ψi, Ia) (1.56)

where the intensity of the far field of each element is proportional to the magnitude of

the current ratio |Ii|/|Ia|.

The above equation is worth a deeper inspection. The first summation states that

the total electric field strength is the sum of the field strengths caused by the individual

elements, each fed by a current Ii. The corresponding setup is shown in Fig. 1.16a

where the power distribution network is designed to set the amplitude and phase of

each complex current Ii. For a lossless network, power conservation requires that3

3Here, a parallel lossless network is assumed, i.e. a Norton equivalent cct.

Only for internal use at KIT



1.6 Antenna Arrays 27

 I
a  I
a 

 1 

  2 

  N 

I1 

I2 

I
N p

o
w

e
r 

d
is

tr
ib

u
ti
o

n
 n

e
tw

o
rk

 
s
tr

ib
u
ti
o

(a) power distribution network

 I
a 

 I
a 

 1 

  2 

  N 

w
1 

w
2 

w
N 

I
1 

I
2 

I
N 

(b) weights

Figure 1.16: Two alternatives for setting the amplitude and phase of the current feeding

each element of an antenna array.

∑N
i Ii = Ia. The second summations in (1.56) determines the total field strength at

a point (r, ϑ, ψ) as the sum over the individual fields where each element is fed by a

current Ia but its field strength contribution is weighted by Ii/Ia. This second summation

could also be realized by a configuration shown in Fig. 1.16b where each weight equals

wi = Ii/Ia. Obviously the two summations are equal, i.e. they both result in the same

total field strength. In this context it is worth recognizing that here, we are considering

(i.e. thinking of) a transmitting array; this will be changed in section 1.6.3 when the

equivalent formulation of a receive array is considered.

For large ri, meaning that the observation point is far away and that the array has

small dimensions compared to the distance r, and if the elements are oriented equally

in space, the field strength at the observation point further simplifies to

~E(r, ϑ, ψ) =
∑

radiators

Ii
Ia
~Esingle (ri, ϑi, ψi, Ia) =

∑

radiators

Ii
Ia
~Esingle (r, ϑ, ψ, Ia) e

−jβ(ri−r) (1.57)

The argument of the complex exponential function gives the phase due to the dif-

ferent path lengths of the different elements. As the field of the single element is no

longer depending on the individual distance ri, we can further modify (1.57) to obtain

~E(r, ϑ, ψ) = ~E ′
single (ϑ, ψ, Ia)

︸ ︷︷ ︸

EF

· e
−jβr

r
︸ ︷︷ ︸

Fd

·
∑

radiators

Ii
Ia
e−jβ(ri−r)

︸ ︷︷ ︸

AF

(1.58)

We can identify in this equation the three factors
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1. element factor EF , defined by the radiation pattern of the single element placed

at the origin, when fed with a normal complex current Ia,

2. distance factor Fd, representing only the free space propagation of the wave. It

has no influence on the radiation pattern,

3. array factor AF , representing the modification of the radiation pattern of the iso-

lated element by placing it into an array. It is a function of the –complex– feeding

current Ii, and the position of each antenna element. The array factor itself is the

radiation pattern of an array of isotropic sources.

The overall radiation pattern of the array can hence be determined by modifying one

or several characteristics of the array:

1. the radiation pattern of each individual element ~Esingle

2. the array factor by adjusting the amplitude and phase of the current Ii feeding

each individual element, the geometry of the array ri, or the number of radiating

elements.

1.6.2 Special Case of Uniform Linear Array

Next the expression for the array factor AF in (1.58) is simplified in order to be able to

present examples on the parameters of the AF . Consider the special case of a linear

equidistant array –commonly referred to as Uniform Linear Array (ULA)– of N elements

placed along the y-axis as shown in Fig. 1.17. Further, we are only interested in the

array factor in the xy-plane, i.e. ϑ = 90◦. Representing the amplitude and phase of the

complex feeding current by αi and φi, respectively, gives

I i
Ia

=

∣
∣
∣
∣

Ii
Ia

∣
∣
∣
∣
ejφi = αie

jφi for i = 0 . . .N − 1 (1.59)

which allows writing the array factor as

AF =
N−1∑

i=0

αie
jφi−jβ(ri−r) (1.60)

For a uniform array the separation between any two adjacent array elements is dy
and, c.f. Fig. 1.17, it is noticed that r1 − r0 = r1 − r = −dy cos(π/2 − ψ) = −dy sin(ψ).
Extending to the path difference between any ri and r gives

ri − r = −i · dy sin(ψ) (1.61)
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Figure 1.17: Uniform linear array of N antenna elements.

which when inserted into (1.60) gives

AF =

N−1∑

i=0

αie
jφi+j2π

dy

λ
i sin(ψ) (1.62)

where, in addition, the wavenumber β has been substituted by 2π/λ.

It is worthwhile considering the above equation in detail; the array factor is the sum

of exponentials each of αi amplitude. The phase of the individual exponentials depend

on: the direction/angle ψ; the separation between the elements dy; the wavelength λ;

and the phase of the current feeding the element φi. For a constant φi = φ0 there is

a constant phase shift 2πdy sin(ψ)/λ between adjacent elements. If φi = 0 then for

the direction ψ = 0◦ all exponentials have identical phase values which results in a

maximum value of |AF | = N which is the direction of the main beam of the antenna

array4. Note also, that each term in the summation can be represented as a phasor

(c.f. section 1.1) and thus, the array factor can be understood as the sum of phasors.

1.6.3 The Steering Vector

In the following we derive a representation of an antenna array which is similar to the

array factor but considers a receiving array. While reciprocity holds for a passive array,

meaning that it is indifferent to the operation as a transmitting or receiving array, a

somehow different “thinking” is required to arrive at the equivalent expressions. The

setup for the receive case is shown in Fig. 1.18 (corresponding to the transmit setup

of Fig. 1.16). An external radiating point source at (r, ϑ, ψ) results in an electric field

strength Ei(t) in front of antenna element i; the antenna element intercepts part of this

4Assuming here that αi = 1 for all i, otherwise the maximum is still at ψ = 0
◦ but |AF | ≤ N
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electric filed inducing a signal si(t) flowing at the terminals of this element (in units of

Volt or Ampere). The signal then weighted by wi, which is the same complex factors as

in the transmit case (reciprocity).
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Figure 1.18: The configuration used to set the complex weights of a receiving array

Specifically, we can write

si(t) = Ei(t)ai(ϑ, ψ) (1.63)

where ai(ϑ, ψ) gives the dependency of the signal on the direction of arrival5 of the

electromagnetic wave, which can be related to the complex equivalent antenna length

but for a receiving antenna. Note that the angular dependency on the direction is not

explicitly include in si(t) for simplicity. Then, the signal at the output of the array is the

weighted sum of the individual array elements:

y(t) =
N∑

i=1

wisi(t) (1.64)

which can be written using matrix notation; defining

s
T (t) =

[
s1(t), s2(t), . . . , sN(t)

]
w
T =

[
w1, w2, . . . , wN

]
(1.65)

where T denotes the transpose. The equivalent vector expression in terms of the dot-

product then is:

y(t) = w
T · s(t) (1.66)

This can be further simplified when recognizing that all the received signals si(t) are

due to a common electromagnetic field source. Specifically, if the array dimensions

5This dependency could also be expressed in terms of the element factor in (1.58)
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are small with respect to the distance to this source, then the electric field Ei(t) at

each element is just a delayed version of the filed at an arbitrary reference element

E(t) = E0(t). Thus, the signal at the terminals of element i is a delayed version of

s(t) = E(t)a(ϑ, ψ) and it becomes si(t) = Ei(t)ai(ϑ, ψ) = E(t − τi)ai(ϑ, ψ) = s(t − τi)

such that:

s(t) =








s(t− τ1)

s(t− τ2)
...

sN(t− τN)








(1.67)

The vector s(t) is commonly known as the steering vector.

Drill Problem 10 Consider a linear receive array similar to that shown in Fig. 1.17 and

a point source positioned in the far field of the array such that the signal is represented

by a plane wave. The unit vector û points from the elements to the point source, while

the vector di points from element 1 (which for simplicity is assumed to be at the center

of the coordinate system) to element i. Show that the relative delay τi of element i is

given by

τi =
û · di
co

(1.68)

where c0 is the speed of light and a · b denotes the dot product of vectors a and b.

1.6.4 Properties of Uniform Linear Antenna Arrays

In the following we investigate several options to affect the shape of the array factor.

Element Spacing

The influence of the distance between the elements on the array factor is shown for an

array consisting of two elements. It should be noted that it is the ratio of element sepa-

ration (array geometry) to wavelength that appears in (1.62), therefore it is common to

state the separation as a ratio of dy/λ.

In general increasing dy/λ will result in a narrowing of the radiation pattern, i.e. a

decrease of the half power beamwidth. Fig. 1.19 compares the radiation patterns of

two element spacings dy/λ = 0.6 and dy/λ = 1. This correspond to a half power

beamwidth of Θ3dB = 6◦ and Θ3dB = 3.8◦, respectively.
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Figure 1.19: Array factor for two different element spacings

Scanning

By introducing a progressive phase shift on the feeding currents Ii from antenna ele-

ment to antenna element the main antenna beam can be directed to different directions

(it is said to be scanned).

To direct the array factor of a linear uniform array to the direction ψmax the phase φi
of the complex current is set such that φi = −2πdyi sin(ψmax)/λ; the amplitude is set to

unity αi = 1. Then (1.62) gives

AF =
N−1∑

i=0

ej2π
dy

λ
i(sinψ−sinψmax) (1.69)

It is easily shown that in this case the maximum of the array factor results when

sinψ − sinψmax = 0. Fig. 1.20 shows the shift in the direction of the main beam from

ψmax = 0◦ to ψmax = 30◦ due to a progressive phase shift of the input current. Note that

the radiation pattern for ψmax = 30◦ has a lower maximum than the one for ϑ0 = 0◦ as

the gain of the single element is lower for this direction than towards ψmax = 0◦.
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Figure 1.20: Array factor for two different scan angles (fixed dy = 0.6λ).

Drill Problem 11 Derive an expression for the absolute value of the array factor of

the linear array shown in Fig. 1.21 consisting of N elements separated by a distance

dx. Assume that all elements are identical and fed by currents Iν for which Iν+1/Iν =

1 · e−jφ0x holds.

1 2 3 4 ... N

y

x
element

dx
z

Figure 1.21: Linear antenna array consisting on N identical elements placed along the

x-axis and separated by dx.

Drill Problem 12 A subsequent phase shift of φx = 30◦ is applied to the elements of a

linear array separated by dx = 25 cm (c.f. Fig. 1.21) operated at f = 1.2GHz. Determine
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i) the direction (angle) of the maximum of the radation pattern, and ii) the direction of

the maximum when the array is operated at f = 1.45GHz.

Tapered Feeding

By varying the amplitudes αi of the currents from element to element (know as ampli-

tude tapering) the shape of the radiation pattern can be modified. Fig. 1.22 shows the

array factors AF and the resulting radiation patterns for a

• constant taper where the weights |Ii|/|Ia| = αi = 1 for i = 1 . . . 7 see Fig. 1.22a

• triangular taper with the weights 0.25, 0.5, 0.75, 1, 0.75, 0.5 and 0.25 see Fig. 1.22c

for a seven element linear array with an element spacing of dy/λ = 1. It is noticed

that the triangular taper results in a stronger suppression of the side lobes (−22 dB

compared to −13 dB for the uniform taper), however the main beam is slightly broader

since the half power beamwidth Θ3dB is about 3.8◦ for the constant taper and 4.8◦ for

the triangular taper, respectively.

-30

-25

-20

-15

-10

-5

0

-90 -75 -60 -45 -30 -15 0 15 30 45 60 75 90

FE

AF

(a) EF and AF , Constant Taper

-30

-25

-20

-15

-10

-5

0

-90 -75 -60 -45 -30 -15 0 15 30 45 60 75 90

(b) Resulting Radiation Pattern

-30

-25

-20

-15

-10

-5

0

-90 -75 -60 -45 -30 -15 0 15 30 45 60 75 90

FE

AF

(c) EF and AF , Triangular Taper

-30

-25

-20

-15

-10

-5

0

-90 -75 -60 -45 -30 -15 0 15 30 45 60 75 90

(d) Resulting Radiation Pattern

Figure 1.22: Array factor for two different tapers with fixed dy = λ
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Grating Lobes

An array with its main beam in the angular direction ψmax can have an additional

“main” beam in another direction depending on the spacing dy/λ of the array elements.

This occurs whenever the summation of exponentials representing the array factor AF

reaches a maximum for a specific direction other than ψmax.

For the array factor of a uniform linear array shown in Fig. 1.17 and described by

(1.69) it can be shown that grating lobes occur for the angles ψGL fulfilling

2π
dy
λ

(sinψGL − sinψmax) = 2πpGL (1.70)

for any integer value of pGL 6= 0. Simplification of the above expression gives

sinψGL = sinψmax + pGL
λ

dy
with pGL = ±1,±2, . . . (1.71)

which is the general expression used to determine the occurrence and angles of grating

lobes.

Next an expression for the maximum allowable element separation in order for grating

lobes not to occur is developed. Consider an array which is scanned such that the

direction of the main lobe is given by ψmax and lets assume that a grating lobe exists

which is in the direction of the virtual line joining the array elements but in the opposite

direction then the main lobe, i.e. if ψmax ≥ 0 then at ψGL = −90◦. Inserting into (1.71)

and solving for the first order grating lobe with pGL = −1 gives:

dy,max

λ
=

1

1 + sinψmax
(1.72)

Now, for element spacings larger than given in the above expression the direction

of the grating lobe will move towards the direction of the main beam, i.e. ψGL > −90◦.

On the other side, if the spacing is reduced, then the value of | sinψGL| > 1 in (1.71)

which means no grating lobe exists. The expression in (1.72) can be used to deter-

mine the maximum allowable element separation in order to avoid the occurrence of

grating lobes. Specifically for a maximum scan angle of ψmax = 90◦ the critical distance

becomes dy,max/λ = 0.5, which is a value well known from literature [Skolnik, 2001].

Grating lobes depend, hence, on the spacing of the elements, the frequency of op-

eration, and the direction of the scan angle. Grating lobes are usually undesirable

since they result in arrays that transmit or receive power into two or more directions

simultaneously.

Fig. 1.23 illustrates this for a seven element linear array with an element spacing

dy = λ. The single element pattern is a simple broad pattern similar to the one of a
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Figure 1.23: Grating lobes for different scan angles

dipole. The taper is constant over the elements, the phase of the current is chosen

such that the main beam angle is ψmax = 0◦ (zenith) and ψmax = 30◦, respectively. In

the first case the grating lobes of the array factor at ψGL = ±90◦ are removed by the null

of the radiation pattern of the single element. However when ψmax = 30◦ the grating

lobe at ψGL = −30◦ is as high as the main beam. In order to remove the grating lobes

for this case, the element spacing must be reduced; choosing dy/λ = 0.6 (note that

dy,max/λ = 0.66 for ψmax = 30◦) as can be seen by comparing Fig. 1.23 to Fig. 1.20.

Drill Problem 13 Consider again the scenario given in Fig. 1.21. The separation be-

tween the antennas is fixed to dx = 1.5λ. Find all angles at which grating lobes will

emerge (assume ϕx = 0, i.e. no phase shift between the antennas). For
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2 Radio Wave Propagation

Fundamentals

The radio frequency channel places fundamental limitations on the performance of

wireless communication systems. The transmission path between the transmitter and

receiver can vary from simple line-of-sight to one that is severely obstructed by build-

ings, mountains, and foliage. Unlike wired channels, that are stationary and pre-

dictable, radio channels are extremely random and do not offer simple analysis. Even

the speed of motion impacts how rapidly the signal level fades as a mobile terminal

moves in space. Modeling the radio channel has historically been one of the most

difficult parts of wireless communication system design, and is often done statistically,

based on measurements made specifically for an intended communication system or

spectrum allocation.

2.1 Introduction to Radio Wave Propagation

The mechanisms of electromagnetic wave propagation are diverse, but can generally

be attributed to reflection, diffraction, and scattering. For example, in urban areas

where there is no direct line-of-sight (LOS) path between transmitter and receiver,

the presence of buildings causes severe diffraction loss. Due to multiple reflections

from various objects, the electromagnetic waves travel along different paths of vary-

ing lengths. The interaction between these waves causes multipath fading at specific

locations, and the signal strengths decrease as the distance between transmitter and

receiver increases. A discussion of wave propagation models, more detailed than what

follows, can be found in [Geng and Wiesbeck, 1998].

Propagation models have traditionally focused on predicting the average signal strength

at a given distance from the transmitter, as well as the variability of the signal strength

in close spatial proximity to a particular location. Propagation models can be divided

as follows:

• large-scale propagation models predict the mean signal strength for large T-R

(i.e. transmit-receive) separation distances (several hundreds or thousands of
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40 2 Radio Wave Propagation Fundamentals

Figure 2.1: Small-scale fading and large-scale fading.

meters). They are useful in estimating the radio coverage area of a transmitter,

since they characterize signal strength.

• small-scale or fading models characterize the rapid fluctuations of the received

signal over very short travel distances (a few wavelengths).

As a receiver (e.g., mobile station) moves over very small distances, the instan-

taneous received signal may fluctuate rapidly giving rise to small-scale fading. The

reason is that the received signal is a sum of many contributions coming from differ-

ent directions (multipath). Since the phases are random, the sum of the contributions

varies widely. In small-scale fading (e.g., Rayleigh fading), the received signal power

may vary by as much as three or four orders of magnitudes (e.g., up to 30–40dB) when

the receiver is moved by only a fraction of a wavelength. As the receiver moves away

from the transmitter over much larger distances, the local average received signal will

gradually decrease (and increase in some parts), and it is this local average signal

level that is predicted by large-scale propagation models. Typically, the local average

is computed by averaging signal measurements over a measurement track of 5λ to

40λ. Fig. 2.1 illustrates small-scale fading and the large-scale variations. This chap-

ter covers large-scale propagation and presents some common modeling techniques

used to predict the received power in radio communication systems. Chapter 3 de-

scribes small-scale multipath fading. Take care: Small scale fading is not a synonym

for fast fading, and large scale fading is not a synonym for slow fading! In chapter 3 the

differences will be made clear.
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2.2 Free-Space Propagation Model 41

2.2 Free-Space Propagation Model

The free-space propagation model is used to predict the received signal strength when

except for a line-of-sight path no other signal contributions have to be considered. This

is the e.g. the case for communication and microwave line-of-sight radio links. The free-

space model predicts that the received power decays as a function of T-R separation

raised to the power of two. The free-space power received by a receiving antenna

which is separated from a transmitting antenna by a distance d, is given by the Friis

free-space equation [Geng and Wiesbeck, 1998]

PR =AeR · SR =
λ2

4π
GR · GTPT

4πd2
=

(
λ

4πd

)2

GRGTPT (2.1a)

PR
dBm

=
PT
dBm

+
GR

dBi
+
GT

dBi
− 20log

(
4πd

λ

)

, (2.1b)

where PT is the transmitted power, PR is the received power (assuming a polarization

matched receiving antenna, optimum orientation of transmitting and receiving anten-

nas, and conjugate complex impedance matching of the receiver), GT is the gain of the

transmitting antenna, GR is the receiving antenna gain, d is the T-R separation, and λ

is the wavelength. The available received power is given by the product of the effective

aperture AeR = GR · λ2/4π of the receiving antenna and the power density SR at the

receiver location. The Friis free-space equation (2.1) shows that the received power

falls off as the square of the T-R separation distance. This implies that the received

power decays by 20dB/decade (concerning the distance).

An isotropic radiator is an idealized antenna which radiates power with unit gain

uniformly in all directions and is often used to reference antenna gains. The effective

isotropic radiated power (EIRP) is defined as

EIRP = PTGT (2.2)

and represents the transmitted power necessary at the input of an idealized isotropic

antenna, so that the far-field power density is equal to that radiated by the real trans-

mitting antenna in the direction of maximum gain.

The path loss, which represents signal attenuation as a positive quantity measured in

dB, is defined as the difference (in dB) between the transmitted power and the received

power. It may, but does not have to, include the effect of the antenna gains. The path

loss for the free-space model when antenna gains are included is given by

PL

dB
=

PT
dBm

− PR
dBm

= 20log

(
4πd

λ0

)

− GR

dBi
− GT

dBi
. (2.3)

Drill Problem 14 Assume that a GSM900 (f = 900MHz) link budget allows a maxi-

mum path loss of 143 dB. Which is the corresponding maximum cell radius for undis-

turbed free space propagation assuming isotropic antennas?
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42 2 Radio Wave Propagation Fundamentals

2.3 Relating Power to Electric Field and Voltage

In section 2.2 the available received power has been derived from the principle of

power conservation. In practice, often the field strength at the receiver position is

needed instead. It can be proven that any radiating structure produces electric and

magnetic fields, where most often only the electric field strength is utilized. For a

single plane wave in free space, the complex electric and magnetic field strength pha-

sors E and H, respectively, are related to the power flux density S by [Balanis, 1989,

Geng and Wiesbeck, 1998].

S =
|E|2
2η0

=
|Eeff |2
η0

=
1

2
η0 |H|2 = η0 |Heff |2 (2.4)

where η0 denotes the free-space intrinsic impedance (i.e. η0 = (µ0/ǫ0)
1/2 = 120πΩ ≈

377Ω) and the subscript ”eff” characterizes effective field strengths (i.e. RMS values)

to distinguish between the RMS values and magnitudes of the field strength phasors.

Assuming only a single signal at the receiver, i.e. considering only one quasi-plane

wave incident on the receiving antenna, the received power PR (again assuming op-

timum orientation, polarization and a conjugate complex impedance match of the re-

ceiver to the receiving antenna) is related to the electric field strength Eeff at the re-

ceiver location by [Balanis, 1982, Geng and Wiesbeck, 1998]

PR =AeR · SR =
λ2

4π
GR · |ER|2

2η0
(2.5a)

PR
dBm

=
|ER|

dBµVm−1
− 20log

(
f

GHz

)

+
GR

dBi
− 140.23 (2.5b)

PR
dBm

=

∣
∣EReff

∣
∣

dBµVm−1
− 20log

(
f

GHz

)

+
GR

dBi
− 137.22. (2.5c)

Drill Problem 15 Show how to derive the (2.5b) from (2.5a).

Often, it is useful to relate the (maximum available) received power PR to the open-

circuit voltage V R at the receiving antenna port. If the receiver input impedance ZR =

RR+jXR is conjugate complex to the receiving antenna impedance ZAR, i.e. ZR=Z∗
AR,

then the receiving antenna will induce a voltage into the receiver which is half of the

open-circuit voltage at the antenna output (conjugate complex impedance matching).

Thus, the received power is maximum and given by

PR =

∣
∣V Reff/2

∣
∣2

Re(ZAR)
=

∣
∣V Reff

∣
∣2

4Re(ZAR)
=

|V R|2
8Re(ZAR)

=
|V R|2

8Re(ZR)
. (2.6)
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Through the equations (2.5)–(2.6) it is possible to relate the (maximum available)

received power to the electric field strength at the receiver location (assuming a single

incident quasi-plane wave) or the RMS open-circuit voltage at the receiving antenna

terminal.

Drill Problem 16 Show, using the Thévenin equivalent antenna circuit, that the re-

ceived power PR is related to the open circuit voltage VR at the receiving antenna port

according to (2.6).

2.4 The Basic Propagation Mechanisms

Reflection, diffraction and scattering are the basic propagation mechanisms which

might have an impact on propagation in terrestrial radio communication systems op-

erating in the 30MHz to 10GHz frequency range (most mobile communication sys-

tems). Propagation mechanisms affecting systems at low frequencies (e.g., ground

wave propagation, ionospheric reflection) and high frequencies (e.g., gaseous absorp-

tion, rain attenuation, troposcatter) are not discussed here. Details can be found in

the literature [Giger, 1991]. Reflection, diffraction, and scattering however, are briefly

explained in the next subsections.

2.4.1 Reflection

When a radio wave propagating through a medium encounters a boundary layer which

is plane and large compared to the wavelength the wave is partially reflected and par-

tially transmitted. If the second medium is perfectly electric conducting (PEC), then all

incident energy is reflected back into the first medium without any loss of energy. The

electric field strength of the reflected and transmitted waves may be related to the in-

cident wave through the Fresnel reflection and transmission coefficients R‖,⊥ and T‖,⊥
respectively. The Fresnel coefficients depend on the material properties, wave polar-

ization, angle of incidence, and material parameters which are frequency dependent.

A polarized electromagnetic wave may be mathematically represented as a sum of two

orthogonal components, such as vertical and horizontal, or left-hand and right-hand cir-

cularly polarized components. For an arbitrary polarization, linear superposition may

be used to compute the reflected fields from a surface. Fig. 2.2 shows an electro-

magnetic wave incident at an angle θi relative to the normal on the interface between

medium 1 and 2. Part of the energy is reflected back to medium 1 at an angle θr=θi (law

of reflection), and part of the energy is transmitted (refracted) into the second medium

at an angle θt satisfying Snell’s law of refraction [Geng and Wiesbeck, 1998]:
√
ǫr1µr1sinθi =

√
ǫr2µr2sinθt (2.7)
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where ǫr = ǫr − jσ/2πfǫ0 is the relative complex permittivity, including also losses due

to a non-vanishing conductivity σ, and µ
r

is the complex permeability of the medium

(µ
r
≈ 1 for most cases in radio communications).

(a) parallel polarization (b) perpendicular polarization

Figure 2.2: Geometry for reflection and transmission of a plane wave incident upon a

plane interface between two media 1 and 2 of different material properties

The nature of reflection varies with the polarization of the electric field. In Fig. 2.2a,

the electric field vector is parallel to the plane of incidence (i.e. the plane containing

incident, reflected, and transmitted rays), and in Fig. 2.2b, the electric field vector is

perpendicular to the plane of incidence. Using superposition, only these two orthogonal

and linear independent polarizations need be considered to solve a general reflection

problem. Considering an interface between air (i.e. ǫr1 = µ
r1

= 1 and a non-magnetic

(but possibly lossy) half space 2 (i.e. µ
r2

= 1), the Fresnel reflection/transmission

coefficients for the electric field parallel (denoted as ‖) and perpendicular (denoted as

⊥) to the plane of incidence are given by [Geng and Wiesbeck, 1998]:

R‖ =
Er

‖

Ei
‖

=
ǫr2cosθi −

√

ǫr2 − sin2θi

ǫr2cosθi +
√

ǫr2 − sin2θi
and T ‖ =

Et
‖

Ei
‖

=
η
2

η
1

(1−R‖) =
1−R‖√

ǫr2
(2.8a)

R⊥ =
Er

⊥

Ei
⊥

=
cosθi −

√

ǫr2 − sin2θi

cosθi +
√

ǫr2 − sin2θi
and T⊥ =

Et
⊥

Ei
⊥

= 1 +R⊥, (2.8b)

where η = (µ0µr/ǫ0ǫr)
1/2 is the wave impedance of the propagation medium. For the

reflection between air and the earth surface, typical values for the soil permittivity and

the conductivity are ǫr2 = 3 . . . 25 and σ2 = 10−4S/m. . . 0.1S/m, respectively. Keep in

mind that these values are dependent on the frequency.

Drill Problem 17 Automotive rain sensors detect water on the windshield of a vehicle.

The infrared beam is radiated at a certain angle (θc) from inside of the car on the glass.

If the windshield is dry, all the energy comes back to the sensor; in case of water

presence on the glass surface, less energy comes back and the wipers are activated.
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What is the name of the phenomenon, when no energy is transfered form one dielectric

medium to the other? Calculate the value of the angle θc if the permittivity (assume no

losses) of the windshield glass is ǫw = 7.6.

Fig. 2.3 shows plots of the reflection and transmission coefficients (here magnitude

only) for both parallel and perpendicular E-field polarization (e.g. vertical and horizon-

tal, if the interface is parallel to the xy-plane) as a function of the incident angle for

the special case when a wave propagates in free space (ǫr1 = µ
r1

=1) and the reflecting

soil half space is characterized by ǫr2=4,36-j3 and µ
r2

=1. For parallel polarization, there

exists usually an angle for which the reflection coefficient shows a local minimum. In

case of a lossless medium 2, this minimum reduces to zero, and the corresponding

incident angle is called Brewster angle [Balanis, 1989]. Therefore, the Brewster angle

is the angle at which in medium 1 no reflection occurs. For non-magnetic (generally if

µr1 = µr2) and lossless half spaces 1 and 2, the Brewster angle only exists for parallel

polarization and is given by

θi,Brewster = arctan

√
ǫr2
ǫr1
. (2.9)

Drill Problem 18 A parallel polarized electromagnetic wave radiated from a submerged

submarine impinges on a planar water-air interface. The dielectric constant of water

is ǫr = 81 at the frequency of the impinging wave. Assume that the impinging wave

is a plane wave at the interface. Determine the angle of incidence to allow complete

transmission of energy.
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46 2 Radio Wave Propagation Fundamentals

In most practical cases of reflection and transmission, the horizontal and vertical

axes of the spatial coordinates do not coincide with the perpendicular and parallel

axes of the propagating waves. In addition, the interface between medium 1 and 2 is

in general not perpendicular to the z-axis of a global coordinate system (e.g., reflection

from a sidewall of a building). Therefore, the plane of incidence, field components and

angles have to be transformed first (according to the true geometry) before utilizing the

Fresnel coefficients in (2.8) [Geng and Wiesbeck, 1998].
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Figure 2.3: Magnitude of reflection and transmission coefficients as a function of the

incident angle for an interface between air (ǫr1 = µ
r1

=1) and a non-magnetic

(but lossy) medium characterized by a complex relative permittivity of and

ǫr2=4,36-j3 and a relative permeability of µ
r2

=1

Since there can’t be an electric field in a perfect conductor, all energy is reflected

when a ray encounters a PEC i.e. |R| = 1. As the electric field tangential to the

surface must vanish in order to satisfy Maxwell’s equations, the reflection coefficients

for parallel and perpendicular polarization must be R‖ = +1 and R⊥ = −1 respectively,

regardless of the incident angle. The ± signs here are valid for the reference directions

defined in Fig. 2.2.

2.4.2 Ground Reflection and 2-Ray Model

In terrestrial radio communication systems, a single direct path between the transmitter

and the receiver is seldom the only physical means for propagation, hence the free-

space model in (2.1) is inaccurate in most cases when used alone. An extension, the

2-ray ground reflection model shown in Fig. 2.4, is a useful propagation model that is

based on geometrical optics (GO), and considers the direct path and a ground-reflected
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path between the antennas. This model has been found to be reasonably accurate for

predicting the large-scale signal strength over distances of several kilometers when-

ever the line-of-sight path is not obstructed. In most terrestrial radio communication

systems (e.g., mobile networks), the maximum T-R separation is at most a few tens of

kilometers, and the earth may be assumed to be flat. However, this does not hold for

long-distance microwave LOS radio links for which the earth curvature has to be taken

into account [Geng and Wiesbeck, 1998].

z

    
(ρ
T ,zT )

    
d
2T

    
d
1

θ θε
r1 = µr1 =1     d2R

ρ

    (ρR,zR )

    
Rp,s(θ ,εrges2,µr 2)

Tx

Rx

ε
r2 ,µr2

Figure 2.4: Geometry for the two-ray propagation model.

The total field-strength at the receiver location and therefore the received power is

then a result of the direct line-of-sight component plus an additional ground-reflected

component. It can be easily shown that the available received power is given by

[Giger, 1991]

PR‖,⊥ =

(
λ0
4π

)2

GRGTPT

∣
∣
∣
∣

e−jk0d1

d1
+R‖⊥(θ, ǫr2, µr2)

e−jk0d2

d2

∣
∣
∣
∣

2

, (2.10)

where k0 = 2π/λ0 denotes the free-space wavenumber, d1 is the distance between

transmitter and receiver for the direct line-of-sight path, and d2 = d2R + d2T is the total

path length for the ground reflection path (see Fig. 2.4). As expected, if the reflection

coefficient R vanishes, the 2-ray propagation (2.10) reduces to the free-space equation

(2.1). For a PEC half space 2 (i.e. for R‖⊥ = ±1) and a very large horizontal T-R

separation (i.e. d1 ≈ d2 ≈ d in all amplitude terms), the 2-ray model (2.10) can be

further simplified, resulting in [Geng and Wiesbeck, 1998]

PR =

(
λ0
4πd

)2

GRGTPT ·
{

4cos2 k0zrzt
d

for v − polarization(‖)
4sin2 k0zrzt

d
for h− polarization(⊥)

(2.11)

with the antennas located at heights zT and zR above the air-ground interface, respec-

tively.
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Fig. 2.5 shows the path loss for a slightly tilted, highly directive transmitting antenna

(i.e. here, in contrast to (2.10) and (2.11), a non-isotropic antenna is used) above a

perfect conductor. The color-coded isotropic path loss shows a complicated spatial

interference pattern, resulting from the linear superposition of the direct line-of-sight

and the ground-reflected paths. Here in addition, the effect of the non-isotropic trans-

mitting antenna is superimposed. For parallel polarization, the path loss shows a local

minimum at the soil interface (i.e. the received power has a maximum), whereas for

perpendicular polarization, the path loss is infinite (i.e. the received power vanishes),

consistent with eq. (2.11) and the boundary conditions resulting from Maxwell’s equa-

tions (vanishing tangential electric field).
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Figure 2.5: Path loss of a (non-isotropic) transmitting antenna situated 50m above a

PEC half space. The path loss is shown for a frequency of 500MHz for

parallel (vertical) and perpendicular (horizontal) E-field polarization.

An example for the 2-ray propagation path loss as a function of the T-R separation is

given in Fig. 2.6 for parallel (here equivalent to vertical) and Fig. 2.7 for perpendicular

(here equivalent to horizontal) polarization, respectively. For small T-R separations d,

the path loss shows rapid fluctuations caused by an interference between the line-of-

sight and the ground-reflected contributions, with the path-loss envelope 6dB below the
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free-space case (note the inverse scale of the isotropic path loss in the figures). For

separations larger than the so-called breakpoint dbreakpoint = 2k0zrzT the (maximum

available) received power can be approximated by [Geng and Wiesbeck, 1998]:

PR =

{

4
(
λ0
4πd

)2
GRGTPT for v − polarization(‖)

GRGTPT
z2
R
z2
T

d4
for h− polarization(⊥)

(2.12)

As seen from the Fig. 2.6 and 2.7 at large distances, the received power falls off

with 20dB/decade for vertical (i.e. PR ∼ 1/d2) and 40dB/decade for horizontal polariza-

tion (i.e. PR ∼ 1/d4) , respectively. For real soil and incident angles close to grazing,

the Fresnel reflection coefficient is close to R = −1, independent of the polarization.

Therefore, the characteristics of the 2-ray propagation above a PEC half space as-

suming horizontal polarization is often a good approximation for the 2-ray propagation

above real soil (for vertical as well as horizontal polarization).
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Figure 2.6: Path loss according to the 2-ray propagation model as a function of the T-R

separation distance d for propagation above a perfectly electric conducting

(PEC), assuming parallel polarization (here: equivalent to vertical), com-

pared to free-space propagation. In this example a transmitter height of

zT=30m and a receiver height of zR=1.5m is used.

Drill Problem 19 Which cell radius results if the two-ray model is applied in the Drill

Problem 14, instead of the free-space propagation. Assume real soil and antenna

heights of 30m for the base station and 1.5m for the handset antenna.
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Figure 2.7: Path loss according to the 2-ray propagation model as a function of the T-R

separation distance d for propagation above a perfectly electric conducting

(PEC), assuming perpendicular polarization (here: equivalent to horizon-

tal), compared to free-space propagation. In this example a transmitter

height of zT=30m and a receiver height of zR=1.5m is used.

Drill Problem 20 Which effect has an increase in handset antenna height according

to the two-ray model for horizontal and vertical polarization before and after the break-

point?

In summary, for small T-R separations d, the path loss shows rapid fluctuations,

with the envelope 6dB below the free-space case (note again the inverse scale of

the isotropic path loss in the figures), increasing with 20dB/decade.

Note also that according to (2.12) and Fig. 2.7, at large distances the received power

and path loss become frequency independent for perpendicular polarization. In addi-

tion, it can be seen from (2.12) that the path loss decreases by 6 dB (i.e. the received

power increases by 6 dB, or factor 4 in linear scale) whenever either the transmitter

height zT or the receiver height zR is doubled. This rule of thumb however, is only

valid for large distances d ≥ dbreakpoint between transmitter and receiver and is called

antenna height gain [Geng and Wiesbeck, 1998].
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Figure 2.8: Knife-edge diffraction geometry (semi-infinite half plane blocks line-of-sight)

2.4.3 Diffraction

Diffraction occurs when the radio path between transmitter and receiver is obstructed

(e.g., buildings, hills etc.). The secondary waves resulting from the irregularities are

present throughout the space and even behind the obstacle, giving rise to a bending

of waves around the obstacle, even when a line-of-sight path does not exist between

transmitter and receiver. Although the received field strength decreases rapidly as a re-

ceiver moves deeper into the shadow (obstructed) region, the diffraction field still exists

and often has sufficient strength to produce a useful (or in other cases an unwanted)

signal. The phenomenon of diffraction can be explained by Huygen’s principle, which

states that all points on a wavefront can be considered as point sources producing

secondary spherical waves, and that these secondary waves combine to produce a

new wavefront in the direction of propagation. Diffraction is caused by the propaga-

tion of these secondary waves into the shadow region. The total field strength of the

diffracted wave in the shadow region is the vector sum of the electric field components

of the individual secondary waves.

Consider a transmitter and receiver separated in free space by a distance d = dT+dR
as shown in Fig. 2.8. Let a semi-infinite screen of effective height H (height above line-

of-sight path) and infinite width in the y-direction be placed between them at distances

dT from the transmitter and dR from the receiver. Assuming H ≪ dT and H ≪ dR , the

field strength E at the receiver, relative to the field strength E0 in the absence of the

knife edge, is given by [Geng and Wiesbeck, 1998]

∣
∣
∣
∣

E

E0

∣
∣
∣
∣
=

1√
2

√
[
1

2
− C(ν)

]2

+

[
1

2
− S(ν)

]2

with ν = H

√

2

λ0

(
1

dT
+

1

dR

)

(2.13)
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Figure 2.9: Normalized magnitude |E/E0| of knife-edge diffracted electric field (or sim-

ilar for magnetic field) as a function of the knife-edge diffraction parameter

ν.

where C(ν) and S(ν) are real Fresnel integrals. Approximations and tabulated values

for Fresnel integrals can be found in [Abramowitz, 1972].

Fig. 2.9 shows the dependency of |E/E0| from the diffraction parameter ν. In the lit

region, the linear superposition of direct line-of-sight and diffracted signal leads to a

spatial interference pattern of the electric field, oscillating around the free-space refer-

ence field strength (Fig. 2.9 for ν < 0).

For a receiving antenna located at the shadow boundary (i.e ν = H = 0), the magni-

tude |E| of the field strength is half of the reference magnitude |E0| without knife edge,

independent of the frequency (cf. Fig. 2.10).

The field strength decreases monotonically when the receiver moves away from the

lit-shadow boundary further into the shadow region (Fig. 2.9 for ν > 0). The signal

strength in the deep shadow region decreases with 1/
√
f . Fig. 2.11 shows the relative

magnitude of the electric field for three different frequencies (1 GHz, 3 GHz, 10GHz), and

in Fig. 2.10 which shows the height dependence of the field strength magnitude for the

example in Fig. 2.11 at a distance of 100m behind the semi-infinite knife edge.

To avoid the calculation of Fresnel integrals, the dash-dotted line in Fig. 2.9 is often

used as an approximation for the knife-edge diffraction in practice. The corresponding
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Figure 2.10: Height dependence of the normalized field strength |E/E0| 100m behind

the semi-infinite screen (knife edge) in Fig. 2.11 for five different frequen-

cies between 100MHz and 10GHz

equations are given by [Geng and Wiesbeck, 1998]:

|E/E0|
dB

≈







0 for ν < −0.78

−6.9− 20log
[

ν − 0.1 +
√

(ν − 0.1)2 + 1
]

for ν ≥ −0.78
(2.14)

For ν < −
√
2 , the difference between the field strength level in the presence of the

knife edge and without knife edge is less than ± 1.1 dB. Under these circumstances, the

knife edge can be often neglected in practice. This limiting case is strongly related to

the concept of Fresnel zones [Geng and Wiesbeck, 1998] as discussed in the following.

The concept of diffraction as a function of the path difference around the obstacle is

explained by Fresnel ellipsoids (see Fig. 2.12). Fresnel ellipsoids represent successive

surfaces for which the total diffraction path length from the transmitter to the receiver is

Nλ0/2 (with N = 1, 2, 3, . . . ) larger than the total path length of the line-of-sight path (in

the absence of the knife edge). The successive Fresnel ellipsoids alternately provide

constructive and destructive interference to the total received signal. The radius of the

N th Fresnel ellipsoid is denoted by RFN and can be expressed in terms of N , λ0, dT ,

and dR by [Geng and Wiesbeck, 1998]

RFN =

√

Nλ0
dTdR
dT + dR

with N = 1, 2, 3 . . . , (2.15)

where this is only valid for dT ≫ RFN and dR ≫ RFN . Comparing the knife-edge

diffraction parameter ν in (2.13) and the Fresnel zone radius in (2.15), it follows that
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Figure 2.11: Normalized field strength |E/E0| produced by an isotropic transmitting an-

tenna in the presence of a semi-infinite absorbing knife edge in a vertical

plane cross section for the three frequencies1 GHz, 3 GHz, and 10GHz

ν < −
√
2 corresponds to a knife edge of ”height” H≤ RF1, i.e. the top of the knife-edge

touches the 1st Fresnel ellipsoid. In summary, if an obstacle does not block any of the

space contained within the 1st Fresnel ellipsoid, the diffraction losses will be small, and

diffraction effects may be neglected for practical purposes.

Drill Problem 21 Determine the knife edge diffraction loss for a GSM900 system caused

by an obstacle which is located at 10 km distance from the transmitter and 2 km distance

from the receiver and surmounts the direct connection between the antennas by 50m.

How large is the radius of the first Fresnel Zone at the point of the obstacle?

In practice, the propagation path may consist of more than one obstacle, in which

case the total diffraction loss must be computed. This multiple diffraction problem
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1st Fresnel ellipsoid

Nth Fresnel ellipsoid
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Figure 2.12: Geometry for the definition of the N th Fresnel ellipsoid

is very difficult to solve. The problem of multiple knife-edges for example, cannot

be solved by applying the single knife-edge equation (2.13) several times [Gen98].

Specialized multiple knife-edge models have been developed for this purpose. How-

ever, the limiting case of propagation over a single knife edge described above gives

good insight into the order of magnitude of the diffraction losses. For a more detailed

discussion, the reader is referred to the literature on multiple knife-edge diffraction

[Deygout, 1991].

2.4.4 Scattering

Scattering occurs when the medium through which the electromagnetic wave travels

or with which the wave interacts consists of objects with dimensions in the order of or

smaller compared to the wavelength. Scattered waves are produced by rough surfaces,

small objects, or by other irregularities in the channel (Fig. 2.13).

Figure 2.13: Scattering from relatively small objects (point scatterer), from statistically

rough surfaces (rough surface scattering), and volumes containing many

objects (volume scattering)

In practice, foliage, street signs, individual trees, and lamp posts induce scattering in

a mobile radio communication system. The actual received signal in a radio system is

therefore often different from what is predicted by free-space propagation, reflection,
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and diffraction models alone. This is because when an electromagnetic wave impinges

on a single object small compared to the wavelength, a rough surface, or a volume

containing many individual objects (e.g., trunks, branches, and leaves in a forest), the

energy is spread out in all directions due to scattering, thereby providing additional

radio energy at the receiver. Analytical methods for the scattering of electromagnetic

waves are only known for very few canonical targets. The computational complexity of

numerical techniques, which are in principle capable of solving scattering problems to

an arbitrary accuracy, rises very quickly if the problem size increases beyond several

wavelengths. Therefore, in the following only some remarks on rough surface scatter-

ing are given.

Flat smooth surfaces that have much larger dimensions than a wavelength may be

modeled as reflective surfaces, i.e. the Fresnel reflection coefficients (2.8) and the

2-ray propagation model (2.10) can be utilized. However, the roughness of such sur-

faces often induces effects different from the specular reflection described earlier. As

the roughness increases, more and more energy is spread out in directions different

from the specular direction (Fig. 2.14). The roughness of the surface can be only ne-

glected as long as the standard deviation σ of the surface height (i.e. RMS value of the

deviation from the mean height) satisfies [Beckmann and Spiyyichino, 1987]

σ <
λ0

8cosθi
(Rayleigh) or σ <

λ0
32cosθi

(Fraunhofer) (2.16)

where the Fraunhofer roughness criterion is generally the better choice.

specular reflection coherent scattering diffuse scattering

Figure 2.14: Specular reflection for ideal flat smooth surface, primarily coherent scat-

tering for slightly rough surface, and exclusively incoherent scattering for

very rough surface

Drill Problem 22 A plane wave is impinging on a rough surface. Determine the max-

imum allowed standard deviation of the surface roughness σ at which the surface is

still considered to be flat. Assume that the allowed averaged phase differences are

π/2 according to the Rayleigh criterion and π/8 according to the Fraunhofer criterion,

respectively.

As a larger percentage of the total energy is spread out for increased surface rough-

ness, the amount of energy in the specular direction reduces. As a first approximation
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to account for this effect, the flat surface Fresnel reflection coefficient is multiplied by a

factor depending on the surface roughness. The resulting modified Fresnel reflection

coefficient is given by [Beckmann and Spiyyichino, 1987]

R‖,⊥
mod(θi, . . . ) = R‖,⊥ · e−8π2

(

σ
λ0

)

2

cos2θi (2.17)

However, these modified reflection coefficients only account for the decrease of en-

ergy in the specular direction but do not include the spread of energy into other direc-

tions. Details on more sophisticated rough surface scattering models are given in the

literature [Geng and Wiesbeck, 1998].

Drill Problem 23 Determine the difference between the standard and the modified

Fresnel reflection coefficients at the Rayleigh and Fraunhofer criteria. Which criterion

would the better choice if you want a reliable result?

2.5 Multipath and Spatial Interference Pattern

In the previous sections 2.2 and 2.4 the propagation mechanisms free-space propa-

gation, reflection, diffraction, and scattering have been treated individually (with the

exception of the 2-ray propagation model in section 2.4.2). In reality, a complex su-

perposition of these effects leads to the so-called multipath propagation and a com-

plicated spatial interference pattern. Multipath propagation is illustrated in Fig. 2.15.

Energy from the transmitter reaches the receiver not only on the line-of-sight path (if

existent), but also through reflection, multiple reflections, scattering, diffraction, multi-

ple diffraction and so on. The field strength in the vicinity of the receiver is given by

the complex vector sum (i.e. accounting for the direction, magnitude, and phase of the

individual electric field vectors). The resulting spatial interference pattern is illustrated

e.g. in Fig. 2.16.

Figure 2.16 shows the path loss for a sample terrain profile of about 8 km length.

The path loss in a vertical plane, containing the transmitter, was calculated utilizing

the Parabolic Equation Method (PEM)[Levy, 1990]. The transmitting antenna is lo-

cated 10.4m above ground. This is shown for two different frequencies of 435MHz and

1.9 GHz. The coherent superposition of line-of-sight signal (where existent), reflected,

and diffracted fields leads to a complicated spatial interference pattern with a frequency

dependent distance between interference minima and/or maxima.
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Figure 2.15: Wave propagation and multipath in terrestrial radio communication sys-

tems
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Figure 2.16: Path loss above a terrain profile of 8km length for a transmitter situated

10.4m above ground (16.4m above sealevel), vertical polarization, and

f = 435MHz (top) and f = 1.9GHz (bottom), respectively
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