
3 Time and Frequency Selective

Radio Channel

Small-scale fading, or simply fading, is used to describe the rapid fluctuation of the

amplitude of the received radio signal over a short period of time or travel distance,

so that large-scale path loss effects (i.e., the variation of the local mean, see chap-

ter 2) may be ignored. Fading is caused by interference between several (two or more)

versions of the same transmitted signal (e.g., line-of-sight, reflected, diffracted, and/or

scattered signal) which arrive at the receiver at slightly different times. This multipath

effect causes the resulting signal at the receiving antenna port to vary widely in ampli-

tude and phase, depending on the distribution of the intensity and relative propagation

time of the waves and the bandwidth of the transmitted signal [Rappaport, 1996].

3.1 An Introduction to Small-Scale Fading

Multipath in the radio channel creates small-scale fading. The three most important

effects are [Geng and Wiesbeck, 1998, Rappaport, 1996]:

• rapid changes in signal strength over a small travel distance or time interval,

• frequency modulation due to varying Doppler shifts on different multipath signals,

• frequency selectivity (i.e., dispersion) caused by multipath propagation delays.

For example, for wireless mobile communication systems in built-up urban areas,

fading occurs because the height of the mobile antennas are well below the height

of the buildings, so there is often no line-of-sight path to the base station (BS). Even

when a line-of-sight path exists, multipath still occurs due to reflections/scattering from

the ground and buildings. The incoming waves arrive from different directions (AOA:

angle of arrival) with, in general, different propagation delays, randomly distributed

amplitudes and phases. These multipath components combine vectorially (remember

comments on phasor) at the receiver and can cause the received signal to distort or

fade. Even when the mobile station (MS) is stationary (i.e., the MS does not move), the

signal may fade due to a movement of surrounding objects (e.g., trees, cars, trucks) or

changes in the weather conditions (e.g., rain, snow).
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62 3 Time and Frequency Selective Radio Channel

If objects are static, and only the mobile receiver is considered to be moving, then

fading is purely a spatial phenomenon. The spatial variations of the signal (see inter-

ference patterns in section 3.5) are seen as temporal variations by the receiver as it

moves through the interference pattern. The plot in Fig. 2.1 (chapter 2) shows typical

rapid variations in the received signal level due to small-scale fading. Due to the rela-

tive motion between a mobile receiver and the BS, each multipath wave experiences

a shift in frequency, called Doppler shift, directly proportional to the velocity and de-

pending on the direction of motion of the MS with respect to the AOA of the individual

multipath wave.

Many physical factors in the radio propagation channel influence small-scale fading

(for fixed-terminal wireless radio systems, e.g., microwave LOS radio links or stationary

reception of TV/radio, only parts of the following list are relevant):

• Multipath propagation: The randomly changing amplitudes, phases, and/or AOAs

of the waves incident at the receiver location, cause fluctuations in the signal

strength, thereby inducing small-scale fading (section 3.2) and/or signal distortion

(e.g., signal smearing, intersymbol interference, section 3.4).

• Speed of the receiver : The motion of a mobile receiver (e.g., MS in GSM sys-

tems) results in random frequency modulation due to different and changing

Doppler shifts on the individual multipath components (section 3.5). The fre-

quency shift can be positive or negative depending on whether the receiver is

moving towards or away from the fixed BS.

• Speed of surrounding objects: If surrounding objects are in motion (e.g., trees,

cars, or trucks), they induce changes in the received field strength (section 3.2)

as well as time varying Doppler shifts (section 3.5), even for a stationary receiving

antenna.

• The signal bandwidth: If the signal bandwidth is larger than the “bandwidth” of

the channel, the received signal will be distorted (frequency selective fading). As

will be shown in section 3.4, the bandwidth of the channel is quantified by the co-

herence bandwidth, which is a measure of the maximum frequency difference for

which signals are still strongly correlated in amplitude (and phase). If the trans-

mitted signal has a narrow bandwidth compared to the so-called Doppler spread

(i.e., the width of the spectrum caused by Doppler), then the time fluctuations

become important (fast fading, see section 3.5).

3.2 Distribution of the Received Signal Strength

Due to changing amplitudes, phases, and AOAs of the individual multipath compo-

nents, the received signal (e.g., power, field strength, open-circuit voltage) varies with
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3.2 Distribution of the Received Signal Strength 63

time. Here in this section, we are only interested in the amplitude distribution of the

received signal ; a characterization of the temporal changes follows in section 3.5.

The complex open-circuit voltage at the terminals of a receiving antenna is written

as:

V R(f, t) = VR(f, t)e
jαR(f,t) =

N(t)
∑

i=1

VRi(t, f)e
jαRi(f,t) (3.1)

where VR = |V R| and αR are the normalized amplitude and phase of the open-circuit

voltage, respectively; N(t) is the number of multipath components, which is a function

of the temporal variable t; and f is the frequency. The time dependency given through

e−j2πfτ is not explicitly shown in the above equation but the different delays of the var-

ious propagation paths is implicitly included in the phase αR as will become apparent

next.

Using |V R| =
√

PR · 8Re(ZR) from (2.6) the open-circuit voltage in (3.1) can be writ-

ten as:

V R(f, t) =
√

PR · 8Re(ZR) ·
N(t)
∑

i=1

Ai(f, t)e
jφi(f,t) · e−j2πfτi(t) (3.2)

where Ai(f, t) and φi(f, t) are the amplitude and phase of the i-th multipath compo-

nents which take into account the wave propagation effect; and τi is the delay of the

i-th component. Thus, in general the amplitudes and phases of all individual multipath

signals as well as the number of signals vary in time. Note that the above formulation

assumes the time variable τ , while the temporal changes of the channel properties are

associated to the variable t.

For the following discussion, we distinguish between multipath fading (i.e., small-

scale fading) caused by moving the receiver through a dense spatial interference pat-

tern, and the fading of the local mean (i.e., large-scale fading) due to slow temporal

changes in the propagation environment (e.g., weather conditions, movement of the

receiver from a LOS into a NLOS location). Small- and large-scale fading have been

illustrated in Fig. 2.1.

3.2.1 Small-Scale Fading Distribution

Considering now only small-scale fading (i.e., the time-varying local mean has been

already removed), the open-circuit voltage phasor can then be written as a summation

V R = VRe
jαR =

N
∑

i=1

VRie
jαRi = VR1e

jαR1 +
N
∑

i=2

VRie
jαRi (3.3)

of a constant number of N multipath signals, where the first term has been taken out

of the summation to emphasized this component as will be explained below.
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Figure 3.1: Linear superposition of a constant (deterministic) phasor V R1 and a large

number of statistically independent, time-varying voltage phasors V Ri

The vector sum in (3.3) is illustrated in Fig. 3.1. Assuming a constant (deterministic)

phasor V R1 and a large number of statistically independent signals i = 2, . . . N of sim-

ilar magnitude and statistically varying phases. The complex (real and imaginary part)

open-circuit voltage V R is characterized by a two-dimensional Gaussian distribution

(central limit theorem [Papoulis, 1984]).

Most often we are not interested in the two-dimensional probability density function

(pdf ) of the complex open-circuit voltage, but only in the one-dimensional pdf for the

magnitude. Starting from the 2D-Gaussian distribution, the pdf for the magnitude can

be derived by an integration over the phase from 0 to 2π, resulting in the Ricean distri-

bution [Rappaport, 1996]

p(VR) =
VR

σ2
I0

(

VR1VR

σ2

)

e−
V 2
R1+V 2

R
2σ2 with σ2 =

1

2

∣

∣

∣

∣

∣

N
∑

i=2

V Ri

∣

∣

∣

∣

∣

2

=
1

2

N
∑

i=2

V 2
Ri, (3.4)

where I0(x) denotes the modified Bessel function of zero order [Abramowitz, 1972].

The Ricean distribution (3.4) is often described in terms of the so-called Ricean

factor

K =
V 2
R1/2

N
∑

i=2
V 2
Ri/2

=
V 2
R1

2σ2
(3.5)

which is defined as the ratio between the deterministic signal power and the variance

of the multipath (i.e., the signal power of all remaining multipath signals), and which

completely specifies the shape of the Ricean distribution. Therefore, the Ricean factor

K is equivalent to a “signal-to-noise ratio” (SNR) for the “wanted” deterministic signal

and the “unwanted” remaining multipath (equivalent noise). Fig. 3.2 shows the Ricean

pdf for different values of the K-factor or SNR, respectively.
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Figure 3.2: Ricean probability density function (pdf ) for different Rice factors K and a

normalized variance σ2 = 1Volt2, including the limiting cases of Rayleigh

(K = 0) and Gaussian distribution (K = ∞)

For a vanishing deterministic signal V R1 (see limiting case K = 0 in Fig. 3.2), the

more general Ricean distribution approaches the special case of a Rayleigh distribu-

tion. The Raleigh distribution is commonly used to describe the statistical time varying

nature of the received signal envelope, when there is no dominant stationary (i.e., non-

fading, deterministic) signal component, such as a line-of-sight propagation path. The

Rayleigh pdf [Rappaport, 1996]

p(VR) =
VR

σ2
e−

V 2
R

2σ2 (3.6)

directly follows from the Ricean pdf in (3.4) for VR1=0, where σ is the RMS value of the

received voltage signal, and σ2 is the time-averaged power of the signal.

On the other hand, the Ricean distribution approaches the Gaussian probability den-

sity function for a dominant deterministic signal (e.g., for a LOS signal much stronger

than all remaining signals). In this case the pdf is given by:

p(VR) ≈
1√
2πσ

e−
(VR−VR1)

2

2σ2 for K =
V 2
R1

2σ2
→ ∞ (3.7)

where this second limiting case of the Ricean distribution is also shown in Fig. 3.2.
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66 3 Time and Frequency Selective Radio Channel

Drill Problem 24 What is the condition on the random quantities xi required for the

equality
∣

∣

∣

∣

∣

M
∑

j=1

xj

∣

∣

∣

∣

∣

2

=
M
∑

j=1

x2
j , (3.8)

to hold? Show that the above equality holds in this case. Relate this to the condition

on the voltages V Ri in (3.4)

Drill Problem 25 Consider a multipath scenario with no dominant LOS contribution.

The pdf in this case is given by the Rayleigh distribution. Calculate the probability that

the open circuit voltage VR ≥ 1.5V given that the RMS value of the voltage is σ = 0.9V.

Explain why for this scenario the average value of the open circuit complex voltage V R

is zero (2D Gauss pdf ) while the average power is larger than zero.

Drill Problem 26 Show that for a large Rican factor K (dominant line of sight compo-

nent) the probability density function (pdf) of a Ricean distribution (given in (3.4)) can

be approximated by a Gaussian pdf given by:

p(VR) ≈
1√
2πσ

e−
(VR−VR1)

2

2σ2 (3.9)

with VR the total voltage; VR1 the dominant voltage; σ2 the noise power; and I0(z) the

modified Bessel function of the first kind and zero-order. Hint: For large arguments |z|
the modified Bessel function can be approximated by:

Iν(z) ≈
ez√
2πz

(

1−
µ− 1

8z
+

(µ− 1)(µ− 9)

2!(8z)2
− . . .

)

(3.10)

where µ = 4ν2 and ν is fixed.

3.2.2 Log-Normal Fading

Many simple large-scale propagation models (see chapter 2) do not consider the fact

that the surrounding environmental may be vastly different at two different locations

having the same T-R (transmit-receive) separation. This leads to measured signals

often significantly different from the average values predicted by these propagation

models. Measurements have shown that at a particular T-R distance d, the path loss

PL(d) is random and often log-normally (normal in dB) distributed about the mean

distance-dependent value PL(d) [Geng and Wiesbeck, 1998, Rappaport, 1996]. That

is

p

(

PL

dB

)

=
1√

2π σPL

dB

exp

[

−
(

PL
dB

− mPL

dB

)2

2
(

σPL

dB

)2

]

(3.11)
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Figure 3.3: Calculated large-scale pdf for a GSM1800 coverage area of several square

kilometers

where mPL/dB and σPL/dB are mean and standard deviation of the path loss in dB,

respectively.

The log-normal distribution describes the random shadowing effects which occur

over a large number of measurement locations which have the same T-R separation,

but different environment and obstruction and levels on the propagation path. Note that

in (3.11), path loss, mean, and standard deviation are all measured in dB. Thus, the

log-normal distribution is simply characterized by a Gaussian distribution when using

dB-values.

In practice, the standard deviation is often computed using measured data (e.g.,

leading to about 7 dB to 10 dB for typical digital mobile radio systems like GSM). How-

ever, more sophisticated large-scale propagation models, like full wave models (e.g.,

integral equation methods, parabolic equation method) or ray-optical models are able

to include detailed information on topography and land usage. Therefore, when us-

ing these more advanced large-scale wave propagation modeling techniques, there

is no need to include an uncertainty region around the predicted path loss given by

the measured standard deviation. Fig. 3.3 shows the large-scale pdf for a GSM1800

coverage area of several square kilometers, calculated using the Parabolic Equation

Method [Geng and Wiesbeck, 1998]. As can be seen, the pdf for the received power in

dB (and similar for the path loss in decibel) closely resembles a Gaussian distribution,

i.e., the magnitude of the received voltage is log-normally distributed.
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68 3 Time and Frequency Selective Radio Channel

3.3 Channel Transfer Function and Impulse Response

The small-scale variations of a radio signal can be directly related to the impulse re-

sponse of the radio channel. The impulse response is a wideband channel characteri-

zation and contains all information necessary to simulate or analyze any type of radio

transmission. This stems from the fact that a radio channel may be modelled as a

linear filter with a time varying impulse response h(τ, t), where the temporal variation

(described by the variable t) is due to spatial receiver motion or time-varying propa-

gation conditions (e.g., moving obstacles, weather conditions). Alternatively, the radio

channel can be characterized by the Fourier transform of the impulse response, i.e.,

the time-varying channel transfer function H(f, t) = Fτ{h(τ, t)}.

R(f>0) = 
1

2

V(f-f
0
)

spectrum of

the equivalent

baseband signal

f+f
0

real part

imaginary part

-f
0

spectrum of the bandpass signal

for positive frequencies

spectrum of the bandpass signal

for negative frequencies

R(f<0) = 
1

2

V
*
(-f-f

0
)

V(f)

Figure 3.4: Spectrum R(f) of a real-valued bandpass signal r(τ) and corresponding

equivalent baseband spectrum R(f) for a reference frequency of f0

The spectrum of the signal transmitted by a general radio communication system is

necessarily bandlimited to the vicinity of a carrier of frequency f0. Note that antennas

cannot effectively radiate energy for wavelengths significantly larger than the antenna

dimensions, thus, the spectrum does not contain a DC component. Such, necessarily

real-valued bandpass signals are favorably described by equivalent baseband or low-

pass signals (sometimes called complex envelope) or corresponding equivalent base-

band spectra (Figs. 3.4 and 3.6 ) [Papoulis, 1977]. The time-varying channel transfer

function H(f, t) of the radio channel is given by:

H(f, t) =
1

2
C(f − f0, t) +

1

2
C∗(−f − f0, t) (3.12)
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3.4 Characterization of Frequency-Selective Channels 69

and its inverse Fourier transform, the real-valued impulse response h(τ, t) written as

h(τ, t) =
1

2
c(τ, t)e+j2πf0τ +

1

2
c∗(τ, t)e−j2πf0τ

= Re
{

c(τ, t)e+j2πf0τ
}

= |c(τ, t)| cos(2πf0τ + ∠c(τ, t)) (3.13)

where c(τ, t) = F−1
τ {C(f, t)}.

Drill Problem 27 Fill out the empty fields in the table below indicating the input, chan-

nel, and output quantities in the various time and frequency representations. Indicate

whether each quantity is real or complex and correctly assign the independent vari-

ables.

time�domain frequency�domain

ba
nd

pa
ss

ba
se
ba

nd

( , )H f t ( , )R f t( , )S f t

Figure 3.5: Representation of signals and systems in the time and frequency domain.

The channel impulse response is easily determined from the equivalent baseband

response of the channel by a multiplication with exp j2πf0τ accounting for the high-

frequency carrier and using the real value only (similar to the usage of complex phasors

in time-harmonic analyses).

3.4 Characterization of Frequency-Selective Channels

Under several conditions (not given here for simplicity), the equivalent baseband im-

pulse response (i.e., the complex envelope) of a radio transmission channel can be

written as [Geng and Wiesbeck, 1998, Rappaport, 1996]

c(τ, t) =

N(t)
∑

i=1

bi(t)e
jφi(t)δ [τ − τi(t)] (3.14)
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Figure 3.6: Real-valued bandpass signal r(τ) and corresponding magnitude of the

equivalent (complex-valued) baseband/lowpass signal v(τ).

which is intuitively clear. The received signal for an impulse δ(τ) exciting the multipath

channel (i.e., the impulse response) consists of a series of attenuated, phase-shifted,

and time-delayed replicas of the transmitted signal. In reality, however, the channel is

always bandlimited. Thus, the Dirac impulses in (3.14) have to be replaced by some

filter function characterizing the finite bandwidth of the channel. Fig. 3.7 shows an

example for the idealized impulse response, or more strictly speaking, the magnitude

of the equivalent baseband response (i.e., the envelope), together with more realistic

bandlimited versions. The latter can be measured by channel sounding techniques (in

the frequency or time domain) [Rappaport, 1996].

Now the dispersive, i.e. frequency dependent, radio channel can be characterized

either in the time or in the frequency domain using the impulse response or the chan-

nel transfer function, respectively. However, in all practical situations the propagation

channel is varying in time and space, i.e. when measuring the channel transfer function

or the impulse response at different spatial locations and/or different times, the results

will be different. Therefore the description has to be based on statistical methods.

Time Domain Characterization

In the time domain, the characterization of the dispersive radio channel is most often

based on the so-called Power Delay Profile (PDP) defined as [Geng and Wiesbeck, 1998,

Only for internal use at KIT



3.4 Characterization of Frequency-Selective Channels 71

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

50 52 54 56 58 60 62 64 66 68 70

not bandlimited

ideal filter of bandwidth B=500kHz

Gaussian filter, B(-3dB)=500kHz

Gaussian filter, B(-20dB)=500kHz

m
a
g
n
i
t
u
d
e
 
o
f
 
e
q
u
i
v
a
l
e
n
t
 
b
a
s
e
b
a
n
d
 
r
e
s
p
o
n
s
e

time delay parameter τ [µs]

Figure 3.7: Magnitude of the (complex) equivalent baseband impulse response for the

case of infinite bandwidth compared to those using ideal and Gaussian

band limitation.

Rappaport, 1996]

PDP(τ, t) = K · |c(τ, t)|2 (3.15)

and shown in Fig. 3.8 which describes the relative received power as a function of the

delay.

By making several local measurements of the PDP at different spatial (or temporal)

locations, it is possible to build an ensemble of PDPs, each one representing a possi-

ble small-scale multipath channel state. Therefore, many snapshots of PDP(τ, t) are

averaged to provide a time-invariant multipath power delay profile PDP(τ) (i.e., mean

PDP). The parameter K in (3.15) relates the total transmitted power (contained in the

probing pulse) to the total received power of the PDP and is irrelevant in the current

context.

In order to compare different multipath channels and to develop some general de-

sign guidelines for wireless systems, parameters which grossly quantify the multipath

channel are utilized. The mean excess delay and the RMS delay spread are multipath

channel parameters that can be determined directly from a PDP. The mean excess
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delay is the first moment of the PDP and is defined as

τ =

+∞
∫

−∞

τ · PDP(τ)dτ

+∞
∫

−∞

PDP(τ)dτ

(3.16)

The RMS delay spread is the square root of the second central moment of the PDP

defined by

τDS =
√

(τ − τ)2 =
√

τ 2 − τ 2 =

√

√

√

√

√

√

√

√

+∞
∫

−∞

τ 2 · PDP(τ)dτ

+∞
∫

−∞

PDP(τ)dτ

−

⎛

⎜

⎜

⎜

⎝

+∞
∫

−∞

τ · PDP(τ)dτ

+∞
∫

−∞

PDP(τ) dτ

⎞

⎟

⎟

⎟

⎠

2

(3.17)
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Figure 3.8: Normalized power delay profile (PDP) (in log-scale) for the strictly bandlim-

ited case in Fig. 3.7 (i.e., with ideal filter of bandwidth B = 500 kHz)

Equations (3.16) and (3.17) do not rely on the absolute power level of the PDP, but

only on relative amplitudes of the multipath components within PDP(τ). Typical values

of the RMS delay spread are on the order of microseconds in outdoor mobile radio

channels, on the order of nanoseconds in indoor radio channels, and several tens of

nanoseconds for fixed-terminal microwave LOS radio links. It is important to note that

the RMS delay spread and mean excess delay can be defined from a single PDP

or the spatial/temporal average of PDPs resulting from consecutive impulse response
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measurements. In the first case, measurements are made at many locations or times

in order to determine a statistical range of multipath channel parameters for a radio

communication system.

Frequency Domain Characterization

Although the power delay profile and the corresponding characteristic parameters are

widely used, it seems to be more natural to describe the frequency-dependent (i.e., dis-

persive) radio channel directly in the frequency domain. The Frequency Auto-Correlation

Function ACFf defined as [Cox and Leck, 1975]

ACFf (∆f, t) =

+∞
∫

−∞

C(f, t)C∗(f −∆f, t) df = C(∆f, t) ∗ C∗(−∆f, t) (3.18)

is used, which is directly based on the (equivalent baseband) channel transfer function

C(f, t) = Fτ{c(τ, t)}. The last equality gives the equivalent expression in terms of the

convolution (symbol ∗) between two functions.

The frequency ACF quantifies over which range of frequencies the radio channel can

be considered “flat” (for magnitude of the normalized frequency ACF close to unity),

and for which frequency separation ∆f there may be large differences in the channel

transfer function.

The parameter used to describe the width of the frequency ACF is the coherence or

correlation bandwidth Bcorr,x%. Fig. 3.9 shows three different transfer functions and the

corresponding frequency ACF. Increasing frequency selectivity (i.e., faster variation of

the transfer function with frequency) narrows the frequency ACF shown in Fig. 3.9b;

and the coherence bandwidth decreases.

Relate Description in Time and Frequency Domain

According to the known theorems of the Fourier transform [Papoulis, 1962], the power

delay profile (3.15) and the frequency ACF (3.18) constitute a pair of Fourier transforms

(Wiener-Khintchine theorem).

ACFf (∆f, t) = Fτ{PDP(τ, t)} (3.19)

Therefore, the width of the PDP characterized by the delay spread τDS and the width

of the frequency ACF characterized by Bcorr,x% satisfy the (time-bandwidth product)

[Papoulis, 1977]

τDS · Bcorr,x% = const or Bcorr,x% ∼
1

τDS

(3.20)

Nur zum internen Gebrauch am KIT



74 3 Time and Frequency Selective Radio Channel

ȁܥଶሺ݂ሻȁȁܥ�ଵሺ݂ሻȁ

ȁܥ�ଷሺ݂ሻȁ

ௌܤ

݂

(a) channel transfer function

100%

37%

ȁܨܥܣ௙ଵሺȟ݂ሻȁ

ȁܨܥܣ௙ଶሺȟ݂ሻȁ

ȁܨܥܣ௙ଷሺȟ݂ሻȁ

ȟ݂ܤ௖௢௥௥ଵ
ଷ଻Ψ ௖௢௥௥ଶܤ

ଷ଻Ψ ௖௢௥௥ଷܤ
ଷ଻Ψ

(b) frequency ACF

Figure 3.9: Comparison of three channel transfer functions and the corresponding fre-

quency ACFs. The frequency variation is decreasing from case 1 to 3

where const depends on the definition of the coherence bandwidth.

For the three different transfer functions and the corresponding frequency ACF shown

in Fig. 3.9, this means that a decreasing coherence bandwidth correspondes to an in-

creased delay spread as given in to (3.20). Frequency selective radio channels are

therefore characterized by small coherence bandwidths and large delay spreads (see

the following more detailed discussion).

Relate Channel to Signal

If the channel shows a constant-gain and linear-phase response only over a band-

width that is smaller than the bandwidth BS of the transmitted signal, then the channel

creates frequency selective fading. Under such conditions, the impulse response has

a multipath delay spread which is greater than the symbol period of the transmitted

waveform (the symbol period and signal bandwidth are related through TS ∼ 1/BS),

and the received signal includes multiple versions of the transmitted waveform which

are attenuated and delayed in time. Hence, the signal is distorted and the channel

induces intersymbol interference.

On the other hand, if the transmitted signal bandwidth BS is smaller then the coher-

ence bandwidth of the radio channel, then the received signal will undergo flat fading

(frequency-independent fading). The strength of the received signal still changes with

time, but the changes are almost identical over the entire transmitted bandwidth.
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3.5 Characterization of Time-Variant Channels 75

To summarize, a signal undergoes flat fading if

BS ≪ Bcorr,x% or TS ≫ τDS (3.21)

and frequency selective fading if

BS > Bcorr,x% or TS < τDS (3.22)

Drill Problem 28 Calculate the mean excess delay and the rms delay spread for the

multipath profile given in Fig. 3.10. Then estimate the 50% coherence bandwidth (i.e.

the bandwidth where the related correlation function is above 0.5) of the channel.

Would this channel be suitable for a mobile phone system occupying a channel band-

width of 30 kHz and/or GSM services with 200 kHz bandwidth?

Hint: The constant const of time-bandwidth product equals 1/50 for a correlation

value above 0.9. If the demand of such a strong correlation is relaxed to 0.5 then const

can be assumed to be 1/5.

2 51

τ

−10 dB

−20 dB

−30 dB

0 dB

norm. PDP(  )

0 sτ/µ

Figure 3.10: Normalized power delay profile.

3.5 Characterization of Time-Variant Channels

Delay spread and coherence bandwidth are parameters which describe the dispersive

nature of the radio channel. However, they do not offer information about the time

varying nature of the channel caused by either relative motion between MS and BS,

or by movement of scattering objects. Doppler spread and coherence time are pa-

rameters which describe the time varying nature of the channel in a small-scale region

[Geng and Wiesbeck, 1998, Rappaport, 1996].
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With a pure sinusoidal tone s(τ) = V0cos(2πf0τ) of frequency f0 as input, the time-

varying nature of the radio channel results in an output which is no longer a pure

harmonic signal:

r(τ, t) = V0 |H(f0, t)| cos [2πf0τ + ∠(H(f0, t))]

=
1

2
V0 |C(0, t)| cos [2πf0τ + ∠(C(0, t))]

(3.23)

where r(τ, t) can also be written as

r(τ) = Re
{

v(t)ej2πf0τ
}

(3.24)

with the time-varying complex envelope v(t) of the output signal.

Time Domain Characterization

Statistically, this time-varying nature of the radio channel can be represented by the

temporal Auto-Correlation Function:

ACFt(∆t) =

+∞
∫

−∞

v(t)v∗(t−∆t)dt = v(∆t) ∗ v∗(−∆t) (3.25)

with ∗ being the convolution. Note that both v(t) and ACFt(∆t) are functions of the

variable t indicating the temporal changes (the time variable τ does not appear in the

equations).

The temporal ACF is often described by a single parameter called coherence time

(or correlation time) Tcorr,x% defined similar to the coherence bandwidth (section 3.4).

Here the correlation time is an indication over which time intervals the envelope and by

this the channel can be considered constant. Fig. 3.11 clarifies the relation between

the temporal envelope variation on one side and the related autocorrelation function

and coherence time on the other.

Frequency Domain Characterization

The power spectral density (PSD) of the time-varying complex envelope v(t) is

PSD(fD) =
∣

∣

∣
Ft{v(t)}

∣

∣

∣

2

=

∣

∣

∣

∣

∣

∣

+∞
∫

−∞

v(t)e−j2πfDtdt

∣

∣

∣

∣

∣

∣

2

= |V (fD)|2 (3.26)
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Figure 3.11: Comparison of three time-varying envelope functions and the correspond-

ing temporal ACFs. Case 1 has the fastest temporal variation.

where fD is the Doppler frequency1 for which PSD(fD) is also called power Doppler

spectrum . The power spectra of the transmitted and received signals are illustrated in

Fig. 3.12.

The parameter used to describe the PSD is the Doppler spread BDS defined by:

BDS = 2

√

fD
2 − fD

2
= 2

√

√

√

√

√

√

√

√

+∞
∫

−∞

f 2
D · PSD(fD)dfD

+∞
∫

−∞

PSD(fD)dfD

−

⎛

⎜

⎜

⎜

⎝

+∞
∫

−∞

fD · PSD(fD)dfD

+∞
∫

−∞

PSD(fD)dfD

⎞

⎟

⎟

⎟

⎠

2

(3.27)

The Doppler spread is a measure of the spectral broadening caused by the time

rate of change of the mobile radio channel and therefore a measure for the range of

frequencies over which the PSD is essentially non-zero. The Doppler shift fD on the

other hand gives an indication of the average or mean frequency of the PSD.

Drill Problem 29 Write an expression to define the Doppler shift fD from the power

spectral density (power Doppler spectrum) PSD(fD).

1Note that the Fourier transform with respect to t is represented by the fD, while the Fourier transform

with respect to τ gives f .
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Figure 3.12: Power spectral density function of the received radio signal for a pure si-

nusoidal transmitted signal.

Relate Description in Time Frequency Domain

According to the theorem of Wiener-Khintchine, the Fourier transform of the ACF (3.28)

yields:

Ft{ACFt(∆t)} = Ft{v(∆t) ∗ v∗(−∆t)} = V (fD)V
∗(fD) = |V (fD)|2 = PSD(fD) (3.28)

Due to the fact that temporal ACF and power Doppler spectrum form a Fourier pair,

the product of coherence time (characterizing the width of the ACF) and the Doppler

spread (characterizing the width of the Doppler spectrum) is constant (time-bandwidth

product) [Rappaport, 1996], i.e.,

Tcorr,x% · BDS = const or Tcorr,x% ∼
1

BDS

(3.29)

Relate Signal to Channel

The coherence (correlation) time is a statistical measure of the time duration over which

the channel is essentially invariant. In other words, the coherence time is the time

separation for which received signals have a strong potential for amplitude correlation.

If the symbol period of the transmitted signal TS is greater than the coherence time,

then the channel will change during the transmission of a single symbol, thus causing

distortion.

On the other hand, if the symbol period is much smaller than the coherence time,

or equivalently, if the signal bandwidth is much larger than the Doppler spread, the
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3.5 Characterization of Time-Variant Channels 79

effects of Doppler spread are negligible. In summary, depending on how rapidly the

transmitted baseband signal varies compared to the rate of change in the channel

characteristics, a radio channel may be classified either as a fast fading or slow fading

channel. The signal undergoes slow fading if

TS ≪ Tcorr,x% or B ≫ BDS (3.30)

and it is characterized as fast fading if

TS > Tcorr,x% or B < BDS (3.31)

It should be noted that when a channel is specified as a slow- or fast-fading channel,

it does not specify whether the channel is flat fading or frequency selective in nature.

In the case of a flat-fading channel, we can approximate the impulse response to be

simply a single delta function. Hence, for a flat-fading and fast-fading channel, the

amplitude of the delta function varies faster than the rate of change of the transmitted

baseband signal. In case of a frequency-selective and fast-fading channel, the am-

plitudes, phases, and time delays of all multipath signals vary faster than the rate of

change of the transmitted signal.

Drill Problem 30 A channel is characterized by a delay spread τDS = 18µs and a

Doppler spread BDS = 105Hz. The channel is used to transmit a GSM-signal which

has a bandwidth of 200 kHz.

i) How is the correlation bandwidth Bcorr related to the parameters mentioned above?

ii)How is the correlation time Tcorr related to the parameters mentioned above?

iii) What types of small-scale fading will a GSM-signal experience in the channel?

3.5.1 Doppler Spectrum of Received Signal

In a multipath environment where the receiver is moving at a velocity νR, each path i
will have a distinct Doppler frequency shift fDi given by:

fDi =
|νR| cosαi

c0/f0
=

|νR| cosαi

λ0
=

|νR,radial|
λ0

i = 1, 2, . . . , N (3.32)

where αi is the angle between the velocity vector νR and the direction of arrival of path

i, and N is the total number of multipath components.

Drill Problem 31 Consider a stationary transmitter which radiates a sinusoidal car-

rier frequency of 1850MHz. Compute the received carrier frequency if the receiver is

mounted in a car moving at νR = 130 km h−1.

i) directly towards the transmitter.

ii) directly away from the transmitter.

iii) perpendicular to the direction of arrival of the signal.
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Figure 3.13: Typical geometry for the multipath wave propagation in a mobile radio sys-

tem with a moving receiver at speed VR.

However, the spectrum of the received signal (at the terminals of the antenna) will

have spectral components in the range between f0−fDmax and f0+fDmax, where fDmax

is the maximum Doppler shift. The amount of broadening depends on the relative

velocity of the mobile receiver and the angle αi between the directions of MS motion

and incoming multipath signals as can be seen from Fig. 3.13.

In mobile radio communication systems for urban areas, the Doppler spectrum is

often approximately characterized by the Jakes spectrum [Jakes, 1974] which is illus-

trated in Fig. 3.14 for a GSM/DCS1800 system (carrier frequency f0 = 1800MHz) and

a mobile receiver travelling at a speed of νR = 130 km h−1, resulting in a maximum

Doppler frequency of fDmax = vR/λ0 = 217Hz.

Drill Problem 32 A relative motion of a receiver to a transmitter leads to a Doppler shift

of the received frequency. If the incidence angles at the receiver are equally distributed

one can find a continues Doppler spectrum.

i) Derive the formula to calculate the Doppler shift for a moving receiver.

ii) Show that the Doppler spectrum can be described by a Jakes spectrum

Ψ (fD) =
const

πfD,max

√

1−
(

fD
fD,max

)2
(3.33)

if the incidence angles and the amplitudes are equally distributed.

iii) Determine the mean Doppler shift fD and the Doppler spread BDS.
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Figure 3.14: Jakes Doppler spectrum for a mobile receiver travelling at a speed of

130 km h−1 in a GSM/DCS1800 mobile system f0 = 1800MHz.
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