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Scope of the (Today‘s) Lecture -\-\J(IT

-

-

Effects during wireless transmission of signals:
» physical phenomena that influence the propagation
of electromagnetic waves

= no statistical description of those effects in terms

of modulated signals

Antennas

Propagation Time and Frequency
Phenomena Selective Radio Channel

Chapter 2: Radio Wave Propagation Fundamentals Institute of Radio Frequency Engineering
and Electronics



Propagation Phenomena ﬂ(".

4 )

refraction

transmitter , i receiver

scattering

N J
4 _ N _ N

reflection: scattering:
free space - plane wave reflection - rough surface scattering
propagation: \- Fresnel coefficients ) - volume scattering )
- line of sight e D ..
- no multipath diffraction: refraction in the

_ _ _ troposphere:
- knife edge diffraction I e

- J J

In general multipath propagation leads to fading at the receiver site \
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The Received Signal

-~

Fading is a deviation of the
attenuation that a signal experiences
over certain propagation media.

It may vary with time, position

and/or frequency

received power

AT
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Signal fading
P m R B g

»

Frequency

Time )

— local mean
—— total received power

large-scale fading
small-scale fading

Classification of fading:

» large-scale fading (gradual change
in local average of signal level)

» small-scale fading (rapid variations

due to random multipath signals)

j

position
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Propagation Models
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" )
Propagation models (PM) are being used to predict:
» average signal strength at a given distance from the transmitter
= variability of the signal strength in close spatial proximity to a particular location
- J
4 N . L ]
P can be divided into: st
» large-scale models Bl iy ST
(mean signal strength for large
transmitter receiver separation)
» small-scale models
(rapid fluctuations of the received
signal over very short travel distances)
\ AN J
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Large-Scale Propagation

Free Space Propagation
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Free Space Propagation
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g )
T
X P o £ Assumptions:
t
G Gr = unobstructed line of sight (LOS)
t
r " no multipath propagation
r G J
~ no(nfluenceofyground
Received power: Power density at Rx site: Antenna effective area:
- 2
N N PT C;T A~ -
PR: *-‘L-,R‘b[{ *SR: o A—L,R: C.TR
dmr? 47
Friis free space equation:
/\2 PT(;T 2 |
- /\ Y Y l
/| -
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Received Power and Path Loss
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4 )
: 3
sing: (Pr)™"™ = 101og (147 )
P dBm P(IBIN (1(1’BI CHIBI 20 loo dmd
( R) T + 7[1 + T~ (‘)b A
\§ v
Assumptions:
» polarization matched receiving antenna
» conjugate complex impedance matching of the receiver
e N
Path loss:
PT Ard
1B . /"
(Pr) = = (P)"” =201log — e e
P A\
Isotropic path loss (no antenna gains):
4d7d
1B , TU(
(p[,)( — 2()1(_)g
A
- Y,
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Polarization

-
Orientation of Field Vectors and Reference Planes
J
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Polarization of the EM Waves ﬁ(".

g )

Every elliptically polarized EM wave can be decomposed

Into a horizontal and a vertical component.

Elliptical Circular Linear
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Polarization: Il, 1, V or H?

11
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Ve

Plane of incidence: formed by the
normal vector to the reflecting surface

and Poynting vector of the incidence wave

-

Normal to the Nl
Reflecting Surface ¢ E|| or EV
—>
E, or E,
Reflecting Surface
Y4 )

Polarization (E-field vector) with
respect to the plane of incidence:
= parallel (II)

= perpendicular (1)

Polarization (E-field vector) with
respect to the earth coordinates:

= vertical (V)

» horizontal (H)
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Reflection and
Transmission

Dielectric Boundary
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Snell’s Law of Reflection
4 N\
= surface large compared to the wave length
@ = smooth surface (otherwise scattering)
—————————— = three angles: - incidence

@ - reflection

- transmission / refraction )

-
» Relation between angles through Fermat’s principle (principle of least time):
- “the rays of light (EM-waves) traverse the path of stationary optical length”
» This results in* Snell’s laws:
- “ratio of the sines of the angles of incidence and refraction is
equivalent to the opposite ratio of the indices of refraction”
- “the incidence and reflection angles are equal and they are in the same plane”
sin(6,) _ n,
— nx:Jgrx'zurx 9:9
- 9 ) n ’ ’ | §
N sin( 6, ! )

*full derivation in Arthur Schuster: “An Introduction to the Theory of Optics”
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Which Part is Transmitted / Reflected? -\\J(IT
s D

Derivation procedure:

= Definition of the electric field strength of the incident wave

» Reflected and transmitted field strengths

» Faraday’s law of induction

= Boundary conditions at the border between two dielectric media

= Decomposition of the incident waves on parallel and normal components

- /
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/P ~ mcos©O; —ipcosO, K, b
L N cos©; +mnycos®, E,
T 21)9 cos O, Lk
= nmcos©; +mpcosO, E;
1o cos©; —ncosO;  E,
R_L p— _ —
19 cos ©; + 1y cos O ;
T o 21]2 COS (“), o Ef
- 19 cOS ©; + 1)1 cos O - E, perpendlcmar»_xﬁ H
E.
where: 1) =
o J

Fresnel coefficients are frequency

dependent and in general complex
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Brewster‘s Angle ()
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/

-

Angle, where no reflection occurs is Brewster’s Angle:

= exists only for parallel (Il / V) polarization

= calculation by comparing the reflection coefficient to zero

= calculation by using “physical limitations”

11 cos ©; — 19 cos O

Ry = =
1 cos ©; + 15 cos B

0
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Brewster‘s Angle (ll)

Incident ray

_ Reflected ray
(unpolarised)

(polarised)

Air (less dense)

Glass (dense)

Refracted ray
(slightly polarised)

AT

ttttttttttttttttttt f Techn
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Brewster‘s Angle (lll) AT

ttttttttttttttttttt f Technology

1 . . . —180
{150
, 0.5F— ]
= 1120 8
> o
G O <
2 3
b ©
S 5
-0.5f ——real part
--=="imaginary part
-absolute value
1o 20 40 60 80 °

angle of incidence ¢, in degree

18 12.11.2018 Chapter 2: Radio Wave Propagation Fundamentals Institute of Radio Frequency Engineering
and Electronics



Brewster‘s Angle (IV)
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-

Operation principle of Brewster window:
» used for windows in optical or quasi optical systems
= window with normal incidence - reflection loses at window

= window tilted at Brewster’s angle - no reflection loses at window

N

Microwave gyrotron

output microwave beam

electron gun

main magnetic field coils

gun coils

resonant cavity mode

converter |
mi rror

launcher vessel electron beam

beam collector

19 12.11.2018 Chapter 2: Radio Wave Propagation Fundamentals

Brewster window

Uncoated

Brewster angle

Xa
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Total Internal Reflection (1)
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20

N )
When does the total internal reflection appears? ni Sin 9, — nt SIN et 0,90
» a ray must strike the medium’s boundary
.. N
at an angle larger than the critical angle _ " Tt
| | & =arcsin
» calculation by comparing the N
|
transmission angle to 90 degree i .
critical angle exists only for n, <n;,
U\ /
X Increaflng the incidence angle Total reflection of red laser light in PMMA
oo .-" o

T« 0° 15° 20° 45° 6O°
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Total Internal Reflection (ll)

e D
Operation principle of rain sensors:

» |IR-beam projected on the glass-air interface at a specific angle
= total inner reflection in dry conditions
» partial transmission to the second medium if windshield is wet

= reduced receive power triggers the sensor
N\ J

windshield

Rain sensor in the rear view mirror ' |

LED photodiode
raindrop
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Visualization Parallel Pol — E-Field

Parallel Pol — Air to Glass
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Parallel Pol — Glass to Air

22

PHYSICS-ANIMATIONS.COM
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Visualization Perpendicular Pol — E-Field
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Perpendicular Pol — Air to Glass Perpendicular Pol — Glass to Air

PHYSICS-ANIMATIONS.COM

PHYSICS-ANIMATIONS.COM
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Reflection and
(no) Transmission

Perfect Electric Conductor (PEC)
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Orthogonal PEC Reflection

Boundary conditions:

SE,=E, +E_ =0

tan,l tan,r
Z Hnorm — Hnorm,i + Hnorm,r — O
reflected wave incident wave

S S —( e >
Ey

Sk
-<
HxR
y
Z
X
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PEC Reflection, Orthogonal Polarization
H
S Incident ' ;
wave E retlecte
x> ’ wave
S
> \ /<
. = N\
Plane of incidence '/ai Ey
/ )
EVr
PEC reflector
4 N
PEC reflection:
[ R“ =+1]1 X Yy
* R, = -1 (to ensure E,,,= 0) a=a, 2

- J
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PEC Reflection: Applications ﬂ(".

r \ . . . - - . .
SenErReE TR e Reflection in the direction of incidence:
= dihedral
= trihedral (corner reflector)

\ J

Trihedral
Corner

Satelite radar
calibration
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Two-Ray
Propagation Model
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Geometry ﬂ(“.
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Two-Ray model is based on geometrical optics and predicts large-scale fading
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Assumptions
\
( B //\\.

Assumptions in two-ray model:

= ground is PEC

" d >>z.,24

AT

Karlsruhe Institute of Technology

~ J | | ground (g,) 4 N
| -
P [ Ao ’ oD 4 cos? (l‘ﬂ%) for ||
RLIE N\ 4n T 4 sin” (}‘—";) for L
> ’ \
Observations:
= the received power Py oscillates like a sin? or cos? with distance
= the minimum value of Pg is O
k = the maximum value of Pz is 4 - Pg eespace (+ 6 dB) )
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Large Distances s
s D 7k
Conditions: "

- d >> kOZTZR 7

"mcosx =21

" Sin2x = x2 | | ground (&,) .
- J B -
4 /\ -) . N\
o) (2%) GrGrPr  for |
RL.|| = Ao )2 kozrzp rz1)° .
4 (47.’(1) (TP(TTPT (—[) — PTCTTCTP T arF for 1
> -
Observations:
= parallel pol: 20 dB / decade, perpendicular pol: 40 dB / decade
» perpendicular pol: independent on frequency
= perpendicular pol: antenna height gain (double z; or zy = quadruple Pg)
g J

hnology
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Breakpoint
f N [~ A R
Definition: ZRZT 1
. ; =4 < =
The breakpoint is the distance d 9
where the argument of the ] 91 ATz 2R
. (breakpoint — 4NOZTZR — —
sin?2and cos? terms equals 0.5 S s A
- 4\ J
/1 | I 1 | \
c052(1h<}
05 dl)reahDOml n
4 N
Beyond the
; " | | breakpoint there
are no oscillations!
0.5 dl)le:uoomt ]
stn2{1."x}

0.5 15

0
\_ 0
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Polarization Dependence
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-

perpendicular polarization parallel polarization
60 - Yp—p———— T 80 - - T v T
2 2-ray 900MHz 1/d?2
70 \\’,%/ddB\ (perpendicular pol.) 70{,
80} ' ".I;M _____ 8 80 I-':‘. ,‘". free-space S00MHz
%0 2 l R 2 «.":,:-"i o 2-ray 900MHz (parallel pol.)
Yy 1o - 90 w...'"' A R i
z 0113 W free-epace 900MHz = AR AT dependent
= 1000 | | : Stoof tie P
! ; AL
2 110¢ : 1 1o HER =
g { g il
S120f i q o120 T
g : 2-ray 1800MHz g g : : p
° 130 = (perpendicular pol.) \\ f E 130 i ' \
- ! = ' free-space 1800MHz
140+ : 3 1401 ! ,
: ! .
L }  2-ray 1800MHz (parallel pol.)
L free-space 1800MHz L ;
i mdependent 160
- | on frequency e . 1
107 10° 10’ 10 10 10° 10’ 10°

N

T-R separation distance d [km]

~

T-R separation distance d [km]

Vs

Pry

>

A (%) GrGrPr (|| polarization) o dig

—l(’\o) G oG P (M)‘)—PC G (zrzp)”
e rpGprl - — I TYTYOR 44

for L
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Frequency Dependence
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-

~

f =900 MHz f=4 GHz
60 ey ce e 60 c ey T
N I === 2-ray parallel pol. === 2-ray parallel pol.
7058 S~ : ---- 2-ray perpendicular pol. 70 ---- 2-ray perpendicular pol.
Y ,
8o ::N--\ —— free-space 80 —— free-space
¥ Y 17 "\\'Q‘, .
S0p-8-§: 4y PR 80 by
) Iy ' ~., f\ N
e - . {4 \ S ooy ] r~g F
o 1004 § ‘,’ r \‘~, o 100 """”;W"i )\’\\
= e \r— g T = R ‘r'\|\~'""~\
%110' :,' d \\\ \~~~\_ - §110 ii: I:' FH o B ‘x‘\ d
) . » S g, b Y s ) g B a
%120 E breakpoint s i S0 0 120 200 B R W o i
Y | e ] PRl E Baoe e
S130F i e - 21301 s u 2 Sl ;|
% : \s % E E E : : L \\\\\\\
S . 1 v
2 : T~ =1 | l e 1 Ubreakpomt—=< o
150} : 150+ EEriis ! N 1
~
160 % 160 : E \\
Sa | %
N |
170 | - 170+ i .
distances of notches >> A i
180 ' L 180 i H :
107" 10° 10’ 10 107 10° o 10' 10°
T-R separation distance d [km] T-R separation distance d [km]
( )
] Y Amzrzp
(lbreakpoint — 4RQZTZR — \
& J
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Path Loss Prediction

o
o
o
w
N
o
o
3

=)
c
N 35
— O
0 = =
%) o @
L o 9 :
= = vertical (parallel)
© g polarization
o ~

range coordinate p (distance from transmitter) 2000m)

80dB 200m

=

c

N S5

— O

m f -

0 %, o

c . o o 2
horizontal (perpendicular) = < 3
polarization © e

o ~
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Diffraction

Diffraction on Absorbing Half-Plates
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Knife Edge Diffraction: Geometry
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4 )
Z A
d d .
transmitter | R receiver

o vy
4 )

» obstacle: semi-infinite, infinitely thin, absorbing plate

» calculate behavior behind the plate: Huygens’ principle

= wave propagation behind the plate: sum of secondary waves

-

/
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Knife Edge Diffraction:

Model

e

H>0

.
Lt

receiver

transmitter
\§

X

4

Field-strength relative to free space (no obstacle):

Chapter 2: Radio Wave Propagation Fundamentals
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4 )
Assumptions in knife edge model:
» cylindrical waves (2D problem)
= T, and R, at same height
= |H| << d;,dg
- J
0.8
0.6f | Fresnel Integrals
0.4}
0.2}
ot
-0.2
-0.4
-0.6
53 2 1 0 1 2 8 4 5

parameter v
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Knife Edge Diffraction: Electric Field (I)
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-

>
shadow region

-6 dB

normalized magnitude of field stregth in dB

<
—~15} lit region
—20k (
v=H |4 L, L
-25f 2\d;  d,
_30L-

-5 -4 -3 -2 -1 0 1 2 3 4 5

parameter v

~
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Knife Edge Diffraction: Electric Field (ll)

AT

Karlsruhe Institute of Technology

f ~
a5
o
= —>
% shadow region
[4b)
% _gl
v 2 -6dB
D
5 -10}
5 -«
=-15} lit region
o
=2 e
£ _o0} P if v<-0.78
3 EE <z—6.9—20log[v—0.1+ (v—0.1)2+1}
N
e _
E L if v>-0.78 \\.
S _30 —
=5 4 -3 2 -1 0 1 2 3 4 5
parameter v
S y,

Chapter 2: Radio Wave Propagation Fundamentals

Institute of Radio Frequency Engineering

and Electronics

&



Knife Edge Diffraction: Frequency Dependence (l) ﬂ(".

f= 1GHz

— -0 —
_|_

~

field strength normalized
to free space level

isotropic Tx antenna
semi-infinite, absorbing plate
f=1GHz, 3 GHz, 10 GHz

100m

—
100m

( )
E ° ° ° °

A

f = 3GHz

-—20m —>_|_<— 20m —» --—20m

A

2000m -

e ——
100m

-a—72m —>_|_<— 20m —

A
Y

2000m

diffraction loss increases with frequency
o,/ for v>>1

normalized fieldstrength | F/F|

2000m -

41 12.11.2018
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Knife Edge Diffraction: Frequency Dependence (ll)

-

( loss relative to free space / dB)

-10

-15

-20

-25

-30

-35

shadow / lit region

a
v

~

——1f = 100MHz
- - e : transmitter height = obstacle height
- ,0°° distance transmitter to knife edge = 1000m
PR distance knife edge to receiver = 100m
-20 -15 10 5 0 5 10 15 20

( re(;eiver héight - obstacle height ) / m
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Fresnel Ellipsoids

N Fresnel zone is bounded by an ellipsoid, where
the Tx-Rx-path is N half wavelengths longer than
the direct Tx-Rx-path d; + d; between Tx and Rx

g
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‘ doy =d; +d, +N-4/2 l

e ™
\ 1st Fresnel ellipsoid
L Nth Fresnel ellipsoid y
4 = I
Vitalxl+ia? 1 /] 1 VA
2 2 2 2 - 2 1 -
\/([7 + an‘,\.'_*_\/(] 2 + R[.‘..\r_(/'T_(]]? ~ 3 (_ + _ ) LN — T
y4 (/']* (/],; Z
. dpdp
= Rpy = \/‘\ /\ﬁ Radius of Nt Fresnel ellipsoid
( (
\§ T + R J
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When to Neglect the Knife Edge Diffraction?

Karlsruhe In: echn

Relate Fresnel radius Rg with diffraction parameter v:

/

-

\

AT

ology

— : ,, -1
drdp _ H\/Z 1 1 _ \/‘2 drdp W
> ) = Hy |~ (— + — =
Rpn \/\/\(/T+{/P v /\((/T (/R) /\(/T—I—(/IJ
(/T(][; o BFN H I
dp + dp _[ N V= Rrn 2
y

Vs

-

If the knife edge does not extend into 15t Fresnel
zone, then the error compared to free space
propagation is less than 1.1 dB:

~

—H > RFl

I/<_\/§

)

If the knife edge does not extend into the 15t Fresnel zone,
then knife edge diffraction can be neglected
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Fresnel Ellipsoids: Example ﬂ(".
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Scattering

Scattering of Incident Energy on Rough Surfaces
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Different Types of Scattering

point scattering
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ology

distributed scattering

Simple targets
(plate, sphere,
cylinder, etc.)

rough surface scattering

volume scattering
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From Specular

-

specular reflection

~

-

coherent scattering

~

Reflection to Incoherent Scattering

( )

diffuse scattering

o J \ J \ J
4 N\ I
Roughness criteria:
Roughness paremeter:
on: RMS height Rayleigh: | &, < Ao
L: correlation length _
9 8cos b,
A
s Fraunhofer: |0, <0
2 32cos 0,
N 2 8 /
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Multipath Propagation

Combination of all Wave Propagation Effects
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Propagation Phenomena ﬂ(".

4 )

refraction

transmitter , i receiver

scattering

N J
4 _ N _ N

reflection: scattering:
free space - plane wave reflection - rough surface scattering
propagation: \- Fresnel coefficients ) - volume scattering )
- line of sight e D ..
- no multipath diffraction: refraction in the

_ _ _ troposphere:
- knife edge diffraction I e

- J J

In general multipath propagation leads to fading at the receiver site \
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Path Loss Prediction over Natural Terrain

70 dB

path loss

150 dB

80 dB

path loss

160 dB

51

80m

g « f=435MHz
16.4 m
Om . . _
0 km distance 205 km Tx height =16.4 m

« vertical polarization

-

somy _..J.':i:i:j_’{i:f e f/” 4

height

« f=1900 MHz

16.4 m

Om
0 km distance 7.95 km
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